Lead and catechol hematotoxicity in vitro using human and murine hematopoietic progenitor cells. 1999

R L Van Den Heuvel, and H Leppens, and G E Schoeters
VITO (Flemish Institute for Technological Research), Department of Environmental Toxicology, Mol, Belgium. vdheuver@vito.be

In vitro cloning assays for hematopoietic myeloid and erythroid precursor cells have been used as screening systems to investigate the hematotoxic potential of environmental chemicals in humans and mice. Granulocyte-monocyte progenitors (CFU-GM) from human umbilical cord blood and from mouse bone marrow (Balb/c and B6C3F1) were cultured in the presence of lead and the benzene metabolite catechol. Erythroid precursors (BFU-E) from human umbilical cord blood were cultured in the presence of lead. The in vitro exposure of the human and murine cells resulted in a dose-dependent depression of the colony numbers. The concentration effect relationship was studied. Results showed that: (1) Based on calculated IC50 values, human progenitors are more sensitive to lead and catechol than are murine progenitors. The dose that caused a 50% decrease in colony formation after catechol exposure was 6 times higher for murine cells (IC50 = 24 micromol/L) than for human cord blood cells (IC50 = 4 micromol/L). Lead was 10-15 times more toxic to human hematopoietic cells (IC50 = 61 micromol/L) than to murine bone marrow cells from both mice strains tested (Balb/c, IC50 = 1060 micromol/L; B6C3F1, IC50 = 536 micromol/L). (2) A lineage specificity was observed after exposure to lead. Human erythroid progenitors (hBFU-E) (IC50 = 3.31 micromol/L) were found to be 20 times more sensitive to the inhibitory effect of lead than were myeloid precursors (hCFU-GM) (IC50 = 63.58 micromol/L). (3) Individual differences in the susceptibility to the harmful effect of lead were seen among cord blood samples. (4) Toxicity of lead to progenitor cells occurred at environmentally relevant concentrations.

UI MeSH Term Description Entries
D007854 Lead A soft, grayish metal with poisonous salts; atomic number 82, atomic weight 207.2, symbol Pb.
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D002396 Catechols A group of 1,2-benzenediols that contain the general formula R-C6H5O2. Pyrocatechols,o-Dihydroxybenzenes,ortho-Dihydroxybenzenes,o Dihydroxybenzenes,ortho Dihydroxybenzenes
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D006412 Hematopoietic Stem Cells Progenitor cells from which all blood cells derived. They are found primarily in the bone marrow and also in small numbers in the peripheral blood. Colony-Forming Units, Hematopoietic,Progenitor Cells, Hematopoietic,Stem Cells, Hematopoietic,Hematopoietic Progenitor Cells,Cell, Hematopoietic Progenitor,Cell, Hematopoietic Stem,Cells, Hematopoietic Progenitor,Cells, Hematopoietic Stem,Colony Forming Units, Hematopoietic,Colony-Forming Unit, Hematopoietic,Hematopoietic Colony-Forming Unit,Hematopoietic Colony-Forming Units,Hematopoietic Progenitor Cell,Hematopoietic Stem Cell,Progenitor Cell, Hematopoietic,Stem Cell, Hematopoietic,Unit, Hematopoietic Colony-Forming,Units, Hematopoietic Colony-Forming
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

R L Van Den Heuvel, and H Leppens, and G E Schoeters
December 1995, American journal of hematology,
R L Van Den Heuvel, and H Leppens, and G E Schoeters
January 2001, Toxicology in vitro : an international journal published in association with BIBRA,
R L Van Den Heuvel, and H Leppens, and G E Schoeters
January 2024, Methods in cell biology,
R L Van Den Heuvel, and H Leppens, and G E Schoeters
August 1988, American journal of veterinary research,
R L Van Den Heuvel, and H Leppens, and G E Schoeters
January 1997, Methods in molecular biology (Clifton, N.J.),
R L Van Den Heuvel, and H Leppens, and G E Schoeters
January 1990, Methods in molecular biology (Clifton, N.J.),
R L Van Den Heuvel, and H Leppens, and G E Schoeters
April 2012, Hematology (Amsterdam, Netherlands),
R L Van Den Heuvel, and H Leppens, and G E Schoeters
May 2019, Advanced healthcare materials,
Copied contents to your clipboard!