Increased renal vasodilator prostanoids prevent hypertension in mice lacking the angiotensin subtype-2 receptor. 1999

H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.

The angiotensin subtype-1 (AT(1)) receptor mediates renal prostaglandin E(2) (PGE(2)) production, and pharmacological blockade of the angiotensin subtype-2 (AT(2)) receptor potentiates the action of angiotensin II (Ang II) to increase PGE(2) levels. We investigated the role of the AT(2) receptor in prostaglandin metabolism in mice with targeted deletion of the AT(2) receptor gene. Mice lacking the AT(2) receptor (AT(2)-null) had normal blood pressure that was slightly elevated compared with that of wild-type (WT) control mice. AT(2)-null mice had higher renal interstitial fluid (RIF) 6-keto-PGF(1alpha) (a stable hydrolysis product of prostacyclin [PGI(2)]) and PGE(2) levels than did WT mice, and had similar increases in PGE(2) and 6-keto-PGF(1alpha) in response to dietary sodium restriction and Ang II infusion. In contrast, AT(2)-null mice had lower PGF(2alpha) levels compared with WT mice during basal conditions and in response to dietary sodium restriction or infusion of Ang II. RIF cAMP was markedly higher in AT(2)-null mice than in WT mice, both during basal conditions and during sodium restriction or Ang II infusion. AT(1) receptor blockade with losartan decreased PGE(2), PGI(2), and cAMP to levels observed in WT mice. To determine whether increased vasodilator prostanoids prevented hypertension in AT(2)-null mice, we treated AT(2)-null and WT mice with indomethacin for 14 days. PGI(2), PGE(2), and cAMP were markedly decreased in both WT and AT(2)-null mice. Blood pressure increased to hypertensive levels in AT(2)-null mice but was unchanged in WT. These results demonstrate that in the absence of the AT(2) receptor, increased vasodilator prostanoids protect against the development of hypertension.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D011464 Epoprostenol A prostaglandin that is a powerful vasodilator and inhibits platelet aggregation. It is biosynthesized enzymatically from PROSTAGLANDIN ENDOPEROXIDES in human vascular tissue. The sodium salt has been also used to treat primary pulmonary hypertension (HYPERTENSION, PULMONARY). Prostacyclin,Prostaglandin I2,Epoprostanol,Epoprostenol Sodium,Epoprostenol Sodium Salt, (5Z,9alpha,11alpha,13E,15S)-Isomer,Flolan,Prostaglandin I(2),Veletri
D011945 Receptors, Angiotensin Cell surface proteins that bind ANGIOTENSINS and trigger intracellular changes influencing the behavior of cells. Angiotensin Receptor,Angiotensin Receptors,Angiotensin II Receptor,Angiotensin III Receptor,Receptor, Angiotensin II,Receptor, Angiotensin III,Receptor, Angiotensin
D004039 Diet, Sodium-Restricted A diet which contains very little sodium chloride. It is prescribed by some for hypertension and for edematous states. (Dorland, 27th ed) Diet, Low-Salt,Diet, Low-Sodium,Diet, Salt-Free,Diet, Low Salt,Diet, Low Sodium,Diet, Salt Free,Diet, Sodium Restricted,Diets, Low-Salt,Diets, Low-Sodium,Diets, Salt-Free,Diets, Sodium-Restricted,Low-Salt Diet,Low-Salt Diets,Low-Sodium Diet,Low-Sodium Diets,Salt-Free Diet,Salt-Free Diets,Sodium-Restricted Diet,Sodium-Restricted Diets
D005260 Female Females
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
May 1999, Proceedings of the National Academy of Sciences of the United States of America,
H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
November 2001, Circulation,
H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
June 1983, Lancet (London, England),
H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
July 1983, Lancet (London, England),
H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
August 1999, Biochemical and biophysical research communications,
H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
March 1999, Brain research,
H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
January 2006, Canadian journal of physiology and pharmacology,
H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
February 2012, Hypertension (Dallas, Tex. : 1979),
H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
March 2010, British journal of pharmacology,
H M Siragy, and T Senbonmatsu, and T Ichiki, and T Inagami, and R M Carey
April 2009, American journal of physiology. Renal physiology,
Copied contents to your clipboard!