Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plants. 1999

R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
Fraunhofer Abteilung für Molekulare Biotechnologie, IUCT, Grafschaft, Schmallenberg, Germany. fischer@bio1.rwth-aachen.de

We describe the expression of the bispecific antibody biscFv2429 in transgenic suspension culture cells and tobacco plants. biscFv2429 consists of two single-chain antibodies, scFv24 and scFv29, connected by the Trichoderma reesi cellobiohydrolase I linker. biscFv2429 binds two epitopes of tobacco mosaic virus (TMV): the scFv24 domain recognizes neotopes of intact virions, and the scFv29 domain recognizes a cryptotope of the TMV coat protein monomer. biscFv2429 was functionally expressed either in the cytosol (biscFv2429-cyt) or targeted to the apoplast using a murine leader peptide sequence (biscFv2429-apoplast). A third construct contained the C-terminal KDEL sequence for retention in the ER (biscFv2429-KDEL). Levels of cytoplasmic biscFv2429 expression levels were low. The highest levels of antibody expression were for apoplast-targeted biscFv2429-apoplast and ER-retained biscFv2429-KDEL that reached a maximum expression level of 1.65% total soluble protein in transgenic plants. Plant-expressed biscFv2429 retained both epitope specificities, and bispecificity and bivalency were confirmed by ELISA and surface plasmon resonance analysis. This study establishes plant cells as an expression system for bispecific single-chain antibodies for use in medical and biological applications.

UI MeSH Term Description Entries
D007128 Immunoglobulin Fragments Partial immunoglobulin molecules resulting from selective cleavage by proteolytic enzymes or generated through PROTEIN ENGINEERING techniques. Antibody Fragment,Antibody Fragments,Ig Fragment,Ig Fragments,Immunoglobulin Fragment,Fragment, Antibody,Fragment, Ig,Fragment, Immunoglobulin,Fragments, Antibody,Fragments, Ig,Fragments, Immunoglobulin
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D010947 Plants, Toxic Plants or plant parts which are harmful to man or other animals. Plants, Poisonous,Plant, Poisonous,Plant, Toxic,Poisonous Plant,Poisonous Plants,Toxic Plant,Toxic Plants
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D014026 Nicotiana A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; the dried leaves of Nicotiana tabacum are used for SMOKING. Tobacco Plant,Nicotiana tabacum,Plant, Tobacco,Plants, Tobacco,Tobacco Plants
D014027 Tobacco Mosaic Virus The type species of TOBAMOVIRUS which causes mosaic disease of NICOTIANA. Transmission occurs by mechanical inoculation. Mosaic Virus, Tobacco,Mosaic Viruses, Tobacco,Tobacco Mosaic Viruses,Virus, Tobacco Mosaic,Viruses, Tobacco Mosaic
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings

Related Publications

R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
August 2000, Applied and environmental microbiology,
R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
August 1994, Protein engineering,
R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
December 1995, Molecular immunology,
R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
January 1997, Molecular immunology,
R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
July 1998, Biochimica et biophysica acta,
R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
January 2009, Methods in molecular biology (Clifton, N.J.),
R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
January 1993, Journal of chromatography,
R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
May 1995, Journal of immunology (Baltimore, Md. : 1950),
R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
July 2015, Molecular medicine reports,
R Fischer, and D Schumann, and S Zimmermann, and J Drossard, and M Sack, and S Schillberg
June 2003, Journal of molecular biology,
Copied contents to your clipboard!