Volatile anesthetic inhibition of neuronal Ca channel currents expressed in Xenopus oocytes. 1999

G L Kamatchi, and C K Chan, and T Snutch, and M E Durieux, and C Lynch
Department of Anesthesiology, University of Virginia Health Sciences Center, PO Box 10010, Charlottesville, VA 22906-0010, USA.

The genes encoding the alpha(1A), alpha(1B), alpha(1C) and alpha(1E) subunits of neuronal high voltage-gated Ca channels (HVGCCs) were separately expressed with beta(1B) and alpha(2)/delta subunits in Xenopus oocytes to determine the effects of volatile anesthetics (VAs) on currents through each specific channel. VA effects were determined on currents carried by Ba(2+) (I(Ba)) using the two electrode voltage clamp technique. Although time to peak was unaffected, both halothane (0.59 mM) and isoflurane (0.70 mM) reversibly inhibited peak I(Ba) by 25-35% and late current (at 830 ms) by 50-60%. A hyperpolarizing shift in steady-state inactivation of alpha(1E)-current was found which could contribute up to one third of observed decrease in the peak current. The rate of inactivation of I(Ba) seen with alpha(1A), alpha(1B) and alpha(1E)-type Ca channels was consistently increased by halothane and isoflurane. To more clearly quantify these effects, I(Ba) inactivation was fit by a single exponential function. The anesthetics depressed both the inactivating and non-inactivating residual components of I(Ba) and decreased the time constant of inactivation. In the case of I(Ba) through alpha(1C)-type channels, inactivation was minimal; however, the average current was inhibited by VAs. Similar inhibition of all these HVGCCs by halothane and isoflurane suggests that a common structural component may be involved. Furthermore, the inhibition of such neuronal HVGCCs in situ could alter synaptic neurotransmitter release and contribute to the anesthetic state.

UI MeSH Term Description Entries
D007530 Isoflurane A stable, non-explosive inhalation anesthetic, relatively free from significant side effects.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D005260 Female Females
D006221 Halothane A nonflammable, halogenated, hydrocarbon anesthetic that provides relatively rapid induction with little or no excitement. Analgesia may not be adequate. NITROUS OXIDE is often given concomitantly. Because halothane may not produce sufficient muscle relaxation, supplemental neuromuscular blocking agents may be required. (From AMA Drug Evaluations Annual, 1994, p178) 1,1,1-Trifluoro-2-Chloro-2-Bromoethane,Fluothane,Ftorotan,Narcotan
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014835 Volatilization A phase transition from liquid state to gas state, which is affected by Raoult's law. It can be accomplished by fractional distillation. Vaporization,Volatility
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi

Related Publications

G L Kamatchi, and C K Chan, and T Snutch, and M E Durieux, and C Lynch
November 1989, Neuron,
G L Kamatchi, and C K Chan, and T Snutch, and M E Durieux, and C Lynch
November 1998, The Journal of physiology,
G L Kamatchi, and C K Chan, and T Snutch, and M E Durieux, and C Lynch
August 1996, Proceedings. Biological sciences,
G L Kamatchi, and C K Chan, and T Snutch, and M E Durieux, and C Lynch
December 1994, Neuroreport,
G L Kamatchi, and C K Chan, and T Snutch, and M E Durieux, and C Lynch
November 1999, The Journal of pharmacology and experimental therapeutics,
G L Kamatchi, and C K Chan, and T Snutch, and M E Durieux, and C Lynch
June 1995, The Journal of physiology,
G L Kamatchi, and C K Chan, and T Snutch, and M E Durieux, and C Lynch
January 1997, Proceedings of the Western Pharmacology Society,
G L Kamatchi, and C K Chan, and T Snutch, and M E Durieux, and C Lynch
February 1992, Pflugers Archiv : European journal of physiology,
G L Kamatchi, and C K Chan, and T Snutch, and M E Durieux, and C Lynch
May 2005, Toxicology and applied pharmacology,
Copied contents to your clipboard!