Role of hepatic lipase in intermediate-density lipoprotein and small, dense low-density lipoprotein formation in hemodialysis patients. 1999

K Oi, and T Hirano, and S Sakai, and Y Kawaguchi, and T Hosoya
Department of Internal Medicine II, Jikei University School of Medicine, Tokyo, Japan.

BACKGROUND It has been reported that remnant lipoproteins and small, dense low-density lipoproteins (LDLs) are risk factors for cardiovascular disease. To determine whether these risk factors are present in hemodialysis (HD) patients who are suffering from a high incidence of atherosclerotic vascular disease, we measured concentrations of remnant lipoproteins and LDL particle diameter in HD patients and compared these with controls. We also measured lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) that play important roles in the generation of remnant lipoproteins and small, dense LDL, and we correlated these changes with plasma lipoprotein abnormalities in HD patients. METHODS Lipoproteins were separated by ultracentrifugation. Apoprotein B in very low-density lipoprotein (VLDL), and intermediate-density lipoprotein (IDL) fractions were measured by a sensitive enzyme-linked immunosorbent assay method. The average LDL particle diameter was measured by gradient gel electrophoresis. RESULTS Plasma triglyceride, total cholesterol, and high-density lipoprotein (HDL) cholesterol concentrations were comparable between HD patients and controls, whereas LDL cholesterol was significantly lower in HD patients. The average LDL particle diameter was not significantly different between HD patients and controls. LDL particle diameter was inversely related to plasma triglyceride concentrations in all of the subjects. VLDL triglyceride, VLDL cholesterol, and VLDL apoprotein B were comparable between HD patients and controls. IDL triglyceride, IDL cholesterol, and IDL apoprotein B concentrations were all significantly increased in HD patients compared with those in controls. LPL mass was not altered, but HTGL activity was significantly decreased in HD patients. The HTGL activity was inversely related to IDL concentrations. CONCLUSIONS These results suggest that a prominent characteristic of lipoprotein abnormalities in HD patients is a marked increase in IDL particle number. In addition, small, dense LDL is not associated with uremic dyslipidemia. Because HTGLs promote the conversion from IDL to LDL and the generation of lipid-poor LDL, a decrease in HTGL activity may contribute to the accumulation of IDL particle and may prevent small, dense LDL formation in HD patients.

UI MeSH Term Description Entries
D008049 Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. It is produced by glands on the tongue and by the pancreas and initiates the digestion of dietary fats. (From Dorland, 27th ed) EC 3.1.1.3. Triacylglycerol Lipase,Tributyrinase,Triglyceride Lipase,Acid Lipase,Acid Lipase A,Acid Lipase B,Acid Lipase I,Acid Lipase II,Exolipase,Monoester Lipase,Triacylglycerol Hydrolase,Triglyceridase,Triolean Hydrolase,Hydrolase, Triacylglycerol,Hydrolase, Triolean,Lipase A, Acid,Lipase B, Acid,Lipase I, Acid,Lipase II, Acid,Lipase, Acid,Lipase, Monoester,Lipase, Triglyceride
D008071 Lipoprotein Lipase An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC 3.1.1.34. Heparin-Clearing Factor,Lipemia-Clearing Factor,Diacylglycerol Lipase,Diglyceride Lipase,Post-Heparin Lipase,Postheparin Lipase,Postheparin Lipoprotein Lipase,Factor, Heparin-Clearing,Factor, Lipemia-Clearing,Heparin Clearing Factor,Lipase, Diacylglycerol,Lipase, Diglyceride,Lipase, Lipoprotein,Lipase, Post-Heparin,Lipase, Postheparin,Lipase, Postheparin Lipoprotein,Lipemia Clearing Factor,Lipoprotein Lipase, Postheparin,Post Heparin Lipase
D008076 Cholesterol, HDL Cholesterol which is contained in or bound to high-density lipoproteins (HDL), including CHOLESTEROL ESTERS and free cholesterol. High Density Lipoprotein Cholesterol,Cholesterol, HDL2,Cholesterol, HDL3,HDL Cholesterol,HDL(2) Cholesterol,HDL(3) Cholesterol,HDL2 Cholesterol,HDL3 Cholesterol,alpha-Lipoprotein Cholesterol,Cholesterol, alpha-Lipoprotein,alpha Lipoprotein Cholesterol
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D008078 Cholesterol, LDL Cholesterol which is contained in or bound to low density lipoproteins (LDL), including CHOLESTEROL ESTERS and free cholesterol. LDL Cholesterol,Cholesteryl Linoleate, LDL,LDL Cholesteryl Linoleate,Low Density Lipoprotein Cholesterol,beta-Lipoprotein Cholesterol,Cholesterol, beta-Lipoprotein,beta Lipoprotein Cholesterol
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked

Related Publications

K Oi, and T Hirano, and S Sakai, and Y Kawaguchi, and T Hosoya
June 1996, Israel journal of medical sciences,
K Oi, and T Hirano, and S Sakai, and Y Kawaguchi, and T Hosoya
December 1998, JAMA,
K Oi, and T Hirano, and S Sakai, and Y Kawaguchi, and T Hosoya
May 2000, Current atherosclerosis reports,
K Oi, and T Hirano, and S Sakai, and Y Kawaguchi, and T Hosoya
September 2021, Clinica chimica acta; international journal of clinical chemistry,
K Oi, and T Hirano, and S Sakai, and Y Kawaguchi, and T Hosoya
September 2020, Biological chemistry,
K Oi, and T Hirano, and S Sakai, and Y Kawaguchi, and T Hosoya
October 2000, Current opinion in lipidology,
K Oi, and T Hirano, and S Sakai, and Y Kawaguchi, and T Hosoya
January 2005, Journal of atherosclerosis and thrombosis,
K Oi, and T Hirano, and S Sakai, and Y Kawaguchi, and T Hosoya
January 2009, American journal of nephrology,
Copied contents to your clipboard!