Interhemispheric supratentorial intracranial pressure gradients in head-injured patients: are they clinically important? 1999

J Sahuquillo, and M A Poca, and M Arribas, and A Garnacho, and E Rubio
Department of Neurosurgery, Vall d'Hebron University Hospitals, Barcelona, Spain. sahuquillo@homemail.com

OBJECTIVE It is generally accepted that the intracranial compartment behaves as a unicameral space in which intracranial pressure (ICP) is uniformly distributed. However, this concept has been challenged many times. Although there is general agreement on the existence of craniospinal and suprainfratentorial gradients, the existence of interhemispheric gradients is still a matter of debate. The object of this study was to reexamine the issue of interhemispheric supratentorial ICP gradients in patients with head injuries and the clinical significance of these gradients in their management. METHODS The authors present the results of a prospective study conducted in 50 head-injured patients to determine the clinical significance of supratentorial ICP gradients. In each case a concurrent bilateral frontal intraparenchymatous device was implanted within the 6-hour window after computerized tomography (CT) scanning. According to CT criteria, each patient was categorized into one of three different groups: 1) diffuse lesions, in which no unilaterally measured volumes greater than 25 ml were present and the midline shift was 3 mm or less; 2) Focal A, in which added hemispheric volumes were greater than 25 ml and midline shift was 3 mm or less; and 3) Focal B, in which all patients with a midline shift greater than 3 mm were included. From the results of the entire group the authors were able to distinguish four different patterns of supratentorial ICP. In Pattern I, the intracranial compartment behaved as a true unicameral space with similar mean ICPs and pulse amplitudes in both hemispheres; in Pattern II, different mean ICPs and amplitudes were observed although ICP increases or decreases were congruent; and in Pattern III, patients with different mean ICPs, different ICP amplitudes, and no congruent increases or decreases of ICP were included. All (15 cases) but one patient with a diffuse lesion presented with ICP Pattern I. Fifteen patients with focal lesions showed a Type II pattern, whereas only one patient presented with a Type III pattern. In 10 patients, of whom all but one presented with a focal lesion, transient gradients that disappeared in less than 4 hours were also observed. CONCLUSIONS In many patients with focal lesions, clinically important interhemispheric ICP gradients exist. In this subset, transient gradients that disappear with time are frequently observed and may indicate an increase in the size of the lesion. The clinical relevance of such gradients is discussed and guidelines for adequately monitoring ICP are suggested to optimize head injury management and to avoid suboptimal or even harmful care in patients with mass lesions.

UI MeSH Term Description Entries
D007427 Intracranial Pressure Pressure within the cranial cavity. It is influenced by brain mass, the circulatory system, CSF dynamics, and skull rigidity. Intracerebral Pressure,Subarachnoid Pressure,Intracerebral Pressures,Intracranial Pressures,Pressure, Intracerebral,Pressure, Intracranial,Pressure, Subarachnoid,Pressures, Intracerebral,Pressures, Intracranial,Pressures, Subarachnoid,Subarachnoid Pressures
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D008991 Monitoring, Physiologic The continuous measurement of physiological processes, blood pressure, heart rate, renal output, reflexes, respiration, etc., in a patient or experimental animal; includes pharmacologic monitoring, the measurement of administered drugs or their metabolites in the blood, tissues, or urine. Patient Monitoring,Monitoring, Physiological,Physiologic Monitoring,Monitoring, Patient,Physiological Monitoring
D011446 Prospective Studies Observation of a population for a sufficient number of persons over a sufficient number of years to generate incidence or mortality rates subsequent to the selection of the study group. Prospective Study,Studies, Prospective,Study, Prospective
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D001924 Brain Concussion A nonspecific term used to describe transient alterations or loss of consciousness following closed head injuries. The duration of UNCONSCIOUSNESS generally lasts a few seconds, but may persist for several hours. Concussions may be classified as mild, intermediate, and severe. Prolonged periods of unconsciousness (often defined as greater than 6 hours in duration) may be referred to as post-traumatic coma (COMA, POST-HEAD INJURY). (From Rowland, Merritt's Textbook of Neurology, 9th ed, p418) Cerebral Concussion,Commotio Cerebri,Concussion, Intermediate,Concussion, Mild,Concussion, Severe,Mild Traumatic Brain Injury,Brain Concussions,Cerebral Concussions,Concussion, Brain,Concussion, Cerebral,Intermediate Concussion,Intermediate Concussions,Mild Concussion,Mild Concussions,Severe Concussion,Severe Concussions
D001929 Brain Edema Increased intracellular or extracellular fluid in brain tissue. Cytotoxic brain edema (swelling due to increased intracellular fluid) is indicative of a disturbance in cell metabolism, and is commonly associated with hypoxic or ischemic injuries (see HYPOXIA, BRAIN). An increase in extracellular fluid may be caused by increased brain capillary permeability (vasogenic edema), an osmotic gradient, local blockages in interstitial fluid pathways, or by obstruction of CSF flow (e.g., obstructive HYDROCEPHALUS). (From Childs Nerv Syst 1992 Sep; 8(6):301-6) Brain Swelling,Cerebral Edema,Cytotoxic Brain Edema,Intracranial Edema,Vasogenic Cerebral Edema,Cerebral Edema, Cytotoxic,Cerebral Edema, Vasogenic,Cytotoxic Cerebral Edema,Vasogenic Brain Edema,Brain Edema, Cytotoxic,Brain Edema, Vasogenic,Brain Swellings,Cerebral Edemas, Vasogenic,Edema, Brain,Edema, Cerebral,Edema, Cytotoxic Brain,Edema, Cytotoxic Cerebral,Edema, Intracranial,Edema, Vasogenic Brain,Edema, Vasogenic Cerebral,Swelling, Brain
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002543 Cerebral Hemorrhage Bleeding into one or both CEREBRAL HEMISPHERES including the BASAL GANGLIA and the CEREBRAL CORTEX. It is often associated with HYPERTENSION and CRANIOCEREBRAL TRAUMA. Brain Hemorrhage, Cerebral,Cerebral Parenchymal Hemorrhage,Hemorrhage, Cerebral,Intracerebral Hemorrhage,Hemorrhage, Cerebrum,Brain Hemorrhages, Cerebral,Cerebral Brain Hemorrhage,Cerebral Brain Hemorrhages,Cerebral Hemorrhages,Cerebral Parenchymal Hemorrhages,Cerebrum Hemorrhage,Cerebrum Hemorrhages,Hemorrhage, Cerebral Brain,Hemorrhage, Cerebral Parenchymal,Hemorrhage, Intracerebral,Hemorrhages, Cerebral,Hemorrhages, Cerebral Brain,Hemorrhages, Cerebral Parenchymal,Hemorrhages, Cerebrum,Hemorrhages, Intracerebral,Intracerebral Hemorrhages,Parenchymal Hemorrhage, Cerebral,Parenchymal Hemorrhages, Cerebral

Related Publications

J Sahuquillo, and M A Poca, and M Arribas, and A Garnacho, and E Rubio
October 2002, Journal of neurosurgical anesthesiology,
J Sahuquillo, and M A Poca, and M Arribas, and A Garnacho, and E Rubio
November 2002, Surgical neurology,
J Sahuquillo, and M A Poca, and M Arribas, and A Garnacho, and E Rubio
January 1998, Acta neurochirurgica. Supplement,
J Sahuquillo, and M A Poca, and M Arribas, and A Garnacho, and E Rubio
April 1978, The Journal of trauma,
J Sahuquillo, and M A Poca, and M Arribas, and A Garnacho, and E Rubio
January 2004, Journal of clinical pathology,
J Sahuquillo, and M A Poca, and M Arribas, and A Garnacho, and E Rubio
January 2005, Journal of veterinary internal medicine,
J Sahuquillo, and M A Poca, and M Arribas, and A Garnacho, and E Rubio
January 1988, Annales francaises d'anesthesie et de reanimation,
J Sahuquillo, and M A Poca, and M Arribas, and A Garnacho, and E Rubio
April 2000, Critical care medicine,
J Sahuquillo, and M A Poca, and M Arribas, and A Garnacho, and E Rubio
January 1998, Acta neurochirurgica. Supplement,
Copied contents to your clipboard!