Molecular analysis of the Cryptococcus neoformans ADE2 gene, a selectable marker for transformation and gene disruption. 1999

S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Durham, North Carolina 27710, USA.

Cryptococcus neoformans is an important fungal pathogen of man. The incidence of cryptococcal disease has increased dramatically in patients immunocompromised because of HIV infection, organ transplantation, or treatment with cytotoxic chemotherapy or corticosteroids. This organism is an excellent model for molecular dissection of fungal pathogenesis and virulence factors. Here we report the nucleotide sequence of the C. neoformans serotype D genomic ADE2 gene, which encodes a phosphoribosylaminoimidazole carboxylase required for purine biosynthesis. Importantly, this version of the ADE2 gene has been used as the selectable marker for virtually all gene disruptions by transformation and homologous recombination in C. neoformans. We compare the nucleotide and amino acid sequences of the ADE2 gene and product to other highly related adenine biosynthetic genes and enzymes from other yeasts and fungi. We also describe a series of convenient ADE2 cassettes for gene disruption construct preparation. Finally, we have identified the ade2 mutations in strains M001 and M049, adenine auxotrophic mutants derived from the serotype A strain H99. These mutant strains have served as recipients for targeted gene disruptions using the ADE2 gene. These studies should facilitate transformation and gene disruption approaches using the ADE2 selectable marker in this important human fungal pathogen.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002262 Carboxy-Lyases Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1. Carboxy-Lyase,Decarboxylase,Decarboxylases,Carboxy Lyase,Carboxy Lyases
D003455 Cryptococcus neoformans A species of the fungus CRYPTOCOCCUS. Its teleomorph is Filobasidiella neoformans. Blastomyces neoformans,Debaryomyces neoformans,Filobasidiella neoformans,Lipomyces neoformans,Saccharomyces neoformans,Torula neoformans,Torulopsis neoformans,Cryptococcus neoformans var. grubii
D004271 DNA, Fungal Deoxyribonucleic acid that makes up the genetic material of fungi. Fungal DNA
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012703 Serotyping Process of determining and distinguishing species of bacteria or viruses based on antigens they share. Serotypings

Related Publications

S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
November 2000, Yeast (Chichester, England),
S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
February 2001, Medical mycology,
S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
March 2010, Fungal genetics and biology : FG & B,
S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
September 1990, Molecular and cellular biology,
S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
January 2012, Methods in molecular biology (Clifton, N.J.),
S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
February 2000, Fungal genetics and biology : FG & B,
S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
November 2004, TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik,
S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
October 1993, Infection and immunity,
S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
November 1997, Gene,
S Sudarshan, and R C Davidson, and J Heitman, and J A Alspaugh
September 1991, Nucleic acids research,
Copied contents to your clipboard!