Comparing thalamocortical and corticothalamic microstructure and spatial reciprocity in the macaque ventral posterolateral nucleus (VPLc) and medial pulvinar. 1999

C Darian-Smith, and A Tan, and S Edwards
Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Victoria, Australia. C.Darian-Smith@Anatomy.unimelb.edu.au

The detailed morphology of thalamocortical (TC) and corticothalamic (CT) pathways connecting the ventral posterolateral nucleus (VPLc) with the primary somatosensory cortex (areas 3b and 1) and the thalamic pulvinar with the posterior parietal cortex (primarily area 7a), was compared. Each pathway processes information relevant to directed reaching tasks, but whereas VPLc receives its major input from the spinal cord and external environment, the primary afferent to the pulvinar is cortical. Using combined tracer and thick fixed slice procedures, the soma/dendritic morphology of TC neuron populations (with known destination) was shown to be quantitatively similar within VPLc and the pulvinar. This implies that differences in information processing in VPLc (a primary relay) and the pulvinar (an integrative thalamic nucleus) are not defined by a distinctive TC morphology, but rather by the connections of these neuron populations. Two morphologically distinct types of CT axon were observed within the medial pulvinar and VPLc. The more common "Type E" were fine, had boutons en passant and diffuse terminal bifurcations ending in masses of tiny boutons. "Type R" axons were thicker, smooth, and terminated in localised clusters of large terminal boutons. Each type had a unique pattern of termination reflecting a distinct action on target neuron populations. The spatial relationship between TC distribution territories and CT terminal fields was examined within the medial pulvinar and VPLc by using anterograde and retrograde tracers injected together within cortical areas 7a, and 3b/1, respectively. Spatial overlap was incomplete within both thalamic nuclei. Our findings show a more complex relationship between TC and CT neuron populations than previously demonstrated.

UI MeSH Term Description Entries
D008252 Macaca fascicularis A species of the genus MACACA which typically lives near the coast in tidal creeks and mangrove swamps primarily on the islands of the Malay peninsula. Burmese Long-Tailed Macaque,Crab-Eating Monkey,Cynomolgus Monkey,M. f. aurea,M. fascicularis,Macaca fascicularis aurea,Monkey, Crab-Eating,Monkey, Cynomolgus,Crab-Eating Macaque,Burmese Long Tailed Macaque,Crab Eating Macaque,Crab Eating Monkey,Crab-Eating Macaques,Crab-Eating Monkeys,Cynomolgus Monkeys,Long-Tailed Macaque, Burmese,Macaque, Burmese Long-Tailed,Macaque, Crab-Eating,Monkey, Crab Eating
D008953 Models, Anatomic Three-dimensional representation to show anatomic structures. Models may be used in place of intact animals or organisms for teaching, practice, and study. Anatomic Models,Models, Surgical,Moulages,Models, Anatomical,Anatomic Model,Anatomical Model,Anatomical Models,Model, Anatomic,Model, Anatomical,Model, Surgical,Moulage,Surgical Model,Surgical Models
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D010784 Photomicrography Photography of objects viewed under a microscope using ordinary photographic methods. Photomicrographies
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D003911 Dextrans A group of glucose polymers made by certain bacteria. Dextrans are used therapeutically as plasma volume expanders and anticoagulants. They are also commonly used in biological experimentation and in industry for a wide variety of purposes. Dextran,Dextran 40,Dextran 40000,Dextran 70,Dextran 75,Dextran 80,Dextran B-1355,Dextran B-1355-S,Dextran B1355,Dextran B512,Dextran Derivatives,Dextran M 70,Dextran T 70,Dextran T-40,Dextran T-500,Hemodex,Hyskon,Infukoll,Macrodex,Polyglucin,Promit,Rheodextran,Rheoisodex,Rheomacrodex,Rheopolyglucin,Rondex,Saviosol,Dextran B 1355,Dextran B 1355 S,Dextran T 40,Dextran T 500
D000367 Age Factors Age as a constituent element or influence contributing to the production of a result. It may be applicable to the cause or the effect of a circumstance. It is used with human or animal concepts but should be differentiated from AGING, a physiological process, and TIME FACTORS which refers only to the passage of time. Age Reporting,Age Factor,Factor, Age,Factors, Age

Related Publications

C Darian-Smith, and A Tan, and S Edwards
February 1998, The Anatomical record,
C Darian-Smith, and A Tan, and S Edwards
October 2006, The Journal of comparative neurology,
C Darian-Smith, and A Tan, and S Edwards
September 2006, Neuroscience letters,
C Darian-Smith, and A Tan, and S Edwards
July 1975, Brain research,
C Darian-Smith, and A Tan, and S Edwards
March 1987, The Journal of comparative neurology,
C Darian-Smith, and A Tan, and S Edwards
December 2023, Journal of neurophysiology,
C Darian-Smith, and A Tan, and S Edwards
October 1960, The Journal of comparative neurology,
C Darian-Smith, and A Tan, and S Edwards
April 2023, Cerebral cortex (New York, N.Y. : 1991),
Copied contents to your clipboard!