Cyclic-AMP-dependent protein kinase (PKA) in testicular cells. Cell specific expression, differential regulation and targeting of subunits of PKA. 1999

V Hansson, and B S Skålhegg, and K Taskén
Institute of Medical Biochemistry, University of Oslo, Norway.

LH and FSH regulate via cyclic adenosine 3'5' cyclic monophosphate (cAMP) and cAMP-dependent protein kinase (PKA), steroid biosynthesis is Leydig and Sertoli cells, respectively. Cyclic AMP also regulates a number of different cellular processes such as cell growth and differentiation, ion channel conductivity, synaptic release of neurotransmitters, and gene transcription. The principle intracellular target for cAMP in mammalian cells is the PKA. The fact that this broad specificity protein kinase mediates a number of discrete physiological responses following cAMP engagement, has raised the question of how specificity is maintained in the cAMP/PKA system. Here we describe features of this signaling pathway that may contribute to explain how differential effects of cAMP may be contributed to features of the PKA signaling pathway.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D008297 Male Males
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013347 Subcellular Fractions Components of a cell produced by various separation techniques which, though they disrupt the delicate anatomy of a cell, preserve the structure and physiology of its functioning constituents for biochemical and ultrastructural analysis. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p163) Fraction, Subcellular,Fractions, Subcellular,Subcellular Fraction
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015971 Gene Expression Regulation, Enzymologic Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis. Enzymologic Gene Expression Regulation,Regulation of Gene Expression, Enzymologic,Regulation, Gene Expression, Enzymologic
D017868 Cyclic AMP-Dependent Protein Kinases A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition. Adenosine Cyclic Monophosphate-Dependent Protein Kinases,Protein Kinase A,cAMP Protein Kinase,cAMP-Dependent Protein Kinases,Cyclic AMP-Dependent Protein Kinase,cAMP-Dependent Protein Kinase,Adenosine Cyclic Monophosphate Dependent Protein Kinases,Cyclic AMP Dependent Protein Kinase,Cyclic AMP Dependent Protein Kinases,Protein Kinase, cAMP,Protein Kinase, cAMP-Dependent,Protein Kinases, cAMP-Dependent,cAMP Dependent Protein Kinase,cAMP Dependent Protein Kinases

Related Publications

V Hansson, and B S Skålhegg, and K Taskén
May 2000, The Journal of steroid biochemistry and molecular biology,
V Hansson, and B S Skålhegg, and K Taskén
June 1977, Life sciences,
V Hansson, and B S Skålhegg, and K Taskén
April 1998, Biochimica et biophysica acta,
V Hansson, and B S Skålhegg, and K Taskén
December 1997, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
V Hansson, and B S Skålhegg, and K Taskén
February 1977, The Journal of biological chemistry,
V Hansson, and B S Skålhegg, and K Taskén
January 1980, Postepy higieny i medycyny doswiadczalnej,
V Hansson, and B S Skålhegg, and K Taskén
July 1989, Proceedings of the National Academy of Sciences of the United States of America,
V Hansson, and B S Skålhegg, and K Taskén
January 2020, Molecular and cellular endocrinology,
V Hansson, and B S Skålhegg, and K Taskén
January 2012, PloS one,
V Hansson, and B S Skålhegg, and K Taskén
January 2008, Progress in brain research,
Copied contents to your clipboard!