Olfactory stimulation enhances light-induced phase shifts in free-running activity rhythms and Fos expression in the suprachiasmatic nucleus. 1999

S Amir, and S Cain, and J Sullivan, and B Robinson, and J Stewart
Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada.

There is evidence to suggest that the olfactory and circadian systems are linked, functionally, and that olfactory stimuli can modulate circadian rhythms in mammals. Furthermore, olfactory bulb removal can alter free-running rhythms in animals housed in constant darkness and can attenuate the effect of social stimuli on photic entrainment of circadian rhythms. The mechanisms through which olfactory stimuli influence circadian rhythms are not known. One possibility is that olfactory stimuli influence circadian rhythms by modulating the activity of the circadian clock located in the hypothalamic suprachiasmatic nucleus. To study this, we assessed the effect of olfactory stimulation on free-running rhythms and on photic resetting of the circadian clock in rats using phase shifts in wheel-running rhythms and expression of the transcription factor Fos in the suprachiasmatic nucleus. We found that brief exposure to an olfactory stimulus, cedar wood essence, in the subjective day or subjective night had no effect on either free-running rhythms or Fos expression in the suprachiasmatic nucleus, but that when presented in combination with light, the odor dramatically enhanced light-induced phase shifts and Fos expression in the suprachiasmatic nucleus. Olfactory stimulation alone induced Fos expression in several structures that innervate the suprachiasmatic nucleus, pointing to ways by which stimulus information transmitted in the olfactory pathways could gain access to the suprachiasmatic nucleus to modulate photic resetting. These findings, showing that clock resetting by light can be facilitated by olfactory stimulation, point to a mechanism by which olfactory cues can modulate entrainment of circadian rhythms.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009812 Odorants The volatile portions of chemical substances perceptible by the sense of smell. Odors,Aroma,Fragrance,Scents,Aromas,Fragrances,Odor,Odorant,Scent
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012903 Smell The ability to detect scents or odors, such as the function of OLFACTORY RECEPTOR NEURONS. Olfaction,Sense of Smell,Smell Sense
D013268 Stimulation, Chemical The increase in a measurable parameter of a PHYSIOLOGICAL PROCESS, including cellular, microbial, and plant; immunological, cardiovascular, respiratory, reproductive, urinary, digestive, neural, musculoskeletal, ocular, and skin physiological processes; or METABOLIC PROCESS, including enzymatic and other pharmacological processes, by a drug or other chemical. Chemical Stimulation,Chemical Stimulations,Stimulations, Chemical
D013493 Suprachiasmatic Nucleus An ovoid densely packed collection of small cells of the anterior hypothalamus lying close to the midline in a shallow impression of the OPTIC CHIASM. Hypothalamic Suprachiasmatic Nuclei,Hypothalamic Suprachiasmatic Nucleus,Suprachiasmatic Nuclei,Suprachiasmatic Nuclei, Hypothalamic,Suprachiasmatic Nucleus, Hypothalamic

Related Publications

S Amir, and S Cain, and J Sullivan, and B Robinson, and J Stewart
December 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
S Amir, and S Cain, and J Sullivan, and B Robinson, and J Stewart
March 1982, Science (New York, N.Y.),
S Amir, and S Cain, and J Sullivan, and B Robinson, and J Stewart
December 1992, Brain research,
S Amir, and S Cain, and J Sullivan, and B Robinson, and J Stewart
November 2011, Chronobiology international,
Copied contents to your clipboard!