Differential function of N-cadherin and cadherin-7 in the control of embryonic cell motility. 1999

S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
UMR 144, Compartimentation et Dynamique Cellulaires, Centre National de la Recherche Scientifique et Institut Curie, 75248 Paris Cedex 05, France. Sylvie.Dufour@curie.fr

Similar amounts of N-cadherin and cadherin-7, the prototypes of type I and type II cadherin, induced cell-cell adhesion in murine sarcoma 180 transfectants, Ncad-1 and cad7-29, respectively. However, in the initial phase of aggregation, Ncad-1 cells aggregated more rapidly than cad7-29 cells. Isolated Ncad-1 and cad7-29 cells adhered and spread in a similar manner on fibronectin (FN), whereas aggregated cad7-29 cells were more motile and dispersed than aggregated Ncad-1 cells. cad7-29 cells established transient contacts with their neighbors which were stabilized if FN-cell interactions were perturbed. In contrast, Ncad-1 cells remained in close contact when they migrated on FN. Both beta-catenin and cadherin were more rapidly downregulated in cad7-29 than in Ncad-1 cells treated with cycloheximide, suggesting a higher turnover rate for cadherin-7-mediated cell-cell contacts than for those mediated by N-cadherin. The extent of FN-dependent focal adhesion kinase phosphorylation was much lower if the cells had initiated N-cadherin-mediated rather than cadherin-7-mediated cell adhesion before plating. On grafting into the embryo, Ncad-1 cells did not migrate and remained at or close to the graft site, even after 48 h, whereas grafted cad7-29 cells dispersed efficiently into embryonic structures. Thus, the adhesive phenotype of cadherin-7-expressing cells is regulated by the nature of the extracellular matrix environment which also controls the migratory behavior of the cells. In addition, adhesions mediated by different cadherins differentially regulate FN-dependent signaling. The transient contacts specifically observed in cadherin- 7-expressing cells may also be important in the control of cell motility.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002449 Cell Aggregation The phenomenon by which dissociated cells intermixed in vitro tend to group themselves with cells of their own type. Aggregation, Cell,Aggregations, Cell,Cell Aggregations
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D003513 Cycloheximide Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. Actidione,Cicloheximide
D003598 Cytoskeletal Proteins Major constituent of the cytoskeleton found in the cytoplasm of eukaryotic cells. They form a flexible framework for the cell, provide attachment points for organelles and formed bodies, and make communication between parts of the cell possible. Proteins, Cytoskeletal
D005353 Fibronectins Glycoproteins found on the surfaces of cells, particularly in fibrillar structures. The proteins are lost or reduced when these cells undergo viral or chemical transformation. They are highly susceptible to proteolysis and are substrates for activated blood coagulation factor VIII. The forms present in plasma are called cold-insoluble globulins. Cold-Insoluble Globulins,LETS Proteins,Fibronectin,Opsonic Glycoprotein,Opsonic alpha(2)SB Glycoprotein,alpha 2-Surface Binding Glycoprotein,Cold Insoluble Globulins,Globulins, Cold-Insoluble,Glycoprotein, Opsonic,Proteins, LETS,alpha 2 Surface Binding Glycoprotein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
January 2005, Cell communication & adhesion,
S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
October 2010, International journal of oncology,
S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
July 2008, Journal of cell science,
S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
April 1992, Investigative ophthalmology & visual science,
S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
December 2011, Nature neuroscience,
S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
April 2014, Microcirculation (New York, N.Y. : 1994),
S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
April 1993, Journal of neuroscience research,
S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
May 2011, Biological chemistry,
S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
December 2017, Oncotarget,
S Dufour, and A Beauvais-Jouneau, and A Delouvée, and J P Thiery
October 2008, Cell and tissue research,
Copied contents to your clipboard!