Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices. 1999

T Voets, and E Neher, and T Moser
Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Federal Republic of Germany. tvoets@gwdg.de

Many neurosecretory preparations display two components of depolarization-induced exocytosis: a phasic component synchronized with Ca2+ channel opening, followed by a slower sustained component. We evaluated possible mechanisms underlying this biphasic behavior by stimulating mouse chromaffin cells in situ with both depolarizations and flash photolysis of caged Ca2+. From a direct comparison of the secretory responses to both stimuli, we conclude that phasic and sustained release components originate from a readily releasable pool (RRP) of equally fusion-competent vesicles, suggesting that differences in the vesicles' proximity to Ca2+ channels underlie the biphasic secretory behavior. An intermediate pool in dynamic equilibrium with the RRP ensures rapid recruitment of release-ready vesicles after RRP depletion. Our results are discussed in terms of a refined model for secretion in chromaffin cells.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008561 Membrane Fusion The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes. Fusion, Membrane,Fusions, Membrane,Membrane Fusions
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009924 Organ Culture Techniques A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1) Organ Culture,Culture Technique, Organ,Culture Techniques, Organ,Organ Culture Technique,Organ Cultures
D010777 Photochemistry A branch of physical chemistry which studies chemical reactions, isomerization and physical behavior that may occur under the influence of visible and/or ultraviolet light. Photochemistries
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D004553 Electric Conductivity The ability of a substrate to allow the passage of ELECTRONS. Electrical Conductivity,Conductivity, Electric,Conductivity, Electrical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

T Voets, and E Neher, and T Moser
June 1984, Biochimica et biophysica acta,
T Voets, and E Neher, and T Moser
September 1995, Journal of physiology and pharmacology : an official journal of the Polish Physiological Society,
T Voets, and E Neher, and T Moser
April 2003, Pharmacology & therapeutics,
T Voets, and E Neher, and T Moser
April 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
T Voets, and E Neher, and T Moser
September 1991, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
T Voets, and E Neher, and T Moser
August 1985, The Physiologist,
T Voets, and E Neher, and T Moser
July 1998, Critical care medicine,
T Voets, and E Neher, and T Moser
April 1996, Biochemical and biophysical research communications,
Copied contents to your clipboard!