Spontaneous generation of superoxide anion by human lens proteins and by calf lens proteins ascorbylated in vitro. 1999

M Linetsky, and H L James, and B J Ortwerth
Mason Eye Institute, University of Missouri, Columbia, MO, 65212, USA.

The proteins isolated from aged human lenses and brunescent cataracts exhibit extensive disulfide bond formation. Diabetic rat lenses similarly contain disulfide-bonded protein aggregates. These observations are consistent with the known link between diabetes, glycation and oxidative damage, and suggest a role for reactive oxygen species (ROS) in this process. To assess whether the glycation-related modifications in human lens proteins spontaneously generate ROS, superoxide anion formation was measured using both cataractous lens proteins and calf lens proteins glycated in vitro with ascorbic acid (ascorbylated). The water-insoluble fraction from aged normal human lenses generated 0.3-0.6 nmol superoxide h(-1)mg protein(-1), whereas the activity increased to 0.5-1.8 nmol h(-1)mg protein(-1)with the WI fraction from brunescent cataracts, and 2.3 nmol h(-1)mg protein(-1)with calf lens proteins ascorbylated for 4 weeks in vitro. The activity in the human lens proteins was observed in both the water-soluble and water-insoluble fractions, and was completely dependent upon the presence of oxygen. The pH optimum curve for superoxide formation increased from pH 6.5 to 10 with both the cataract and ascorbylated proteins. The superoxide-generating activity in human lens was completely bound to a boronate affinity column, but only partially bound with the ascorbylated proteins. The superoxide anion produced by a 5 m m solution of purified N(epsilon)-fructosyl-lysine was barely detectable, and therefore, could not account for the superoxide formed by any of the lens protein preparations. Also, superoxide formation increased 10-fold at pH 8.8 with fructosyl-lysine, but only 1.3-1.8-fold with human lens proteins. The addition of copper-stimulated superoxide formation with glycated bovine serum albumin, but no stimulation was seen with cataractous proteins. Assays of specific compounds showed that catechol, hydroquinone, 3-OH kynurenine and 3-OH anthranylic acid exhibited the greatest activity for superoxide generation, but had a very short halflife. 2,3-Dihydroxypyridine and 4,5 dihydroxynaphthalene were one and two orders of magnitude less reactive. In long-term incubations at 37 degrees, cataractous proteins retained the potential to produce superoxide anion, losing only half of the initial activity after 6-7 days. Therefore, the water-insoluble fraction from aged human lenses and dark brown cataracts are potentially capable of generating >100 nmol mg protein(-1)and >170 nmol mg protein(-1)of superoxide anion respectively, likely due to the presence of advanced glycation endproducts in human lens proteins. This spontaneous generation of superoxide anion in vivo could account for a major portion of the oxidation of sulfur amino acids seen during aging and cataract formation.

UI MeSH Term Description Entries
D002386 Cataract Partial or complete opacity on or in the lens or capsule of one or both eyes, impairing vision or causing blindness. The many kinds of cataract are classified by their morphology (size, shape, location) or etiology (cause and time of occurrence). (Dorland, 27th ed) Cataract, Membranous,Lens Opacities,Pseudoaphakia,Cataracts,Cataracts, Membranous,Lens Opacity,Membranous Cataract,Membranous Cataracts,Opacities, Lens,Opacity, Lens,Pseudoaphakias
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002846 Chromatography, Affinity A chromatographic technique that utilizes the ability of biological molecules, often ANTIBODIES, to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Chromatography, Bioaffinity,Immunochromatography,Affinity Chromatography,Bioaffinity Chromatography
D003459 Crystallins A heterogeneous family of water-soluble structural proteins found in cells of the vertebrate lens. The presence of these proteins accounts for the transparency of the lens. The family is composed of four major groups, alpha, beta, gamma, and delta, and several minor groups, which are classed on the basis of size, charge, immunological properties, and vertebrate source. Alpha, beta, and delta crystallins occur in avian and reptilian lenses, while alpha, beta, and gamma crystallins occur in all other lenses. Lens Proteins,Crystallin,Eye Lens Protein,Lens Protein, Eye,Protein, Eye Lens,Proteins, Lens
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000369 Aged, 80 and over Persons 80 years of age and older. Oldest Old
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000838 Anions Negatively charged atoms, radicals or groups of atoms which travel to the anode or positive pole during electrolysis. Anion
D001205 Ascorbic Acid A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Vitamin C,Ascorbic Acid, Monosodium Salt,Ferrous Ascorbate,Hybrin,L-Ascorbic Acid,Magnesium Ascorbate,Magnesium Ascorbicum,Magnesium di-L-Ascorbate,Magnorbin,Sodium Ascorbate,Acid, Ascorbic,Acid, L-Ascorbic,Ascorbate, Ferrous,Ascorbate, Magnesium,Ascorbate, Sodium,L Ascorbic Acid,Magnesium di L Ascorbate,di-L-Ascorbate, Magnesium

Related Publications

M Linetsky, and H L James, and B J Ortwerth
December 1986, Toxicology and applied pharmacology,
M Linetsky, and H L James, and B J Ortwerth
April 1988, Thrombosis and haemostasis,
M Linetsky, and H L James, and B J Ortwerth
December 2000, Infection and immunity,
M Linetsky, and H L James, and B J Ortwerth
February 1982, Arthritis and rheumatism,
M Linetsky, and H L James, and B J Ortwerth
January 1982, Clinical immunology and immunopathology,
M Linetsky, and H L James, and B J Ortwerth
January 1996, The Journal of asthma : official journal of the Association for the Care of Asthma,
M Linetsky, and H L James, and B J Ortwerth
April 1990, Inflammation,
M Linetsky, and H L James, and B J Ortwerth
June 1991, Kansenshogaku zasshi. The Journal of the Japanese Association for Infectious Diseases,
Copied contents to your clipboard!