CO(2)-induced expression of c-fos in the nucleus of the solitary tract and the area postrema of developing swine. 1999

A L Sica, and P M Gootman, and D A Ruggiero
Department of Medicine, Pulmonary and Critical Care Division, Long Island Jewish Medical Center, Long Island Campus of the Albert Einstein College of Medicine, New Hyde Park, NY 11040, USA. asica@snet.net

This investigation was performed to determine whether hypercapnic exposure elicited expression of the c-fos protooncogene product, FOS, in nucleus of the solitary tract (NTS) and area postrema (AP) neurons of developing swine. Mean arterial blood pressure (MAP) and heart rate (HR) were also monitored to evaluate whether numbers of neurons containing FOS were related to changes of MAP and HR. In each experiment, two litter-matched piglets were prepared simultaneously, i.e., Saffan anesthesia, paralysis, and artificial ventilation (100% O(2)). One animal was exposed to hypercapnia (1 h of 10% CO(2), balance oxygen), while the other continued to breathe 100% O(2). Animals were studied at three different ages: 5-8 days, 13-15 days, and 26-34 days old. In the NTS, FOS expression was prominent in regions corresponding to the general visceral afferent subdivision; the AP showed no such topographic distribution. The number of NTS and AP neurons with FOS in hypercapnic-exposed animals was significantly greater than those of unexposed animals. However, an age-related increase of FOS was observed only for NTS neurons, with the greatest number observed in 13- to 15-day-old animals. Increases of MAP, not HR, were noted during the early part of hypercapnia in the 5- to 8-day-old group; older animals exhibited no change of MAP. Our findings demonstrated that prolonged hypercapnic stimulation elicited FOS expression in AP and NTS neurons of developing animals, and that such expression was non-uniform, depending upon the region studied.

UI MeSH Term Description Entries
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D002245 Carbon Dioxide A colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbonic Anhydride,Anhydride, Carbonic,Dioxide, Carbon
D002552 Cerebral Ventricles Four CSF-filled (see CEREBROSPINAL FLUID) cavities within the cerebral hemispheres (LATERAL VENTRICLES), in the midline (THIRD VENTRICLE) and within the PONS and MEDULLA OBLONGATA (FOURTH VENTRICLE). Foramen of Monro,Cerebral Ventricular System,Cerebral Ventricle,Cerebral Ventricular Systems,Monro Foramen,System, Cerebral Ventricular,Systems, Cerebral Ventricular,Ventricle, Cerebral,Ventricles, Cerebral,Ventricular System, Cerebral,Ventricular Systems, Cerebral
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D006935 Hypercapnia A clinical manifestation of abnormal increase in the amount of carbon dioxide in arterial blood.
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

A L Sica, and P M Gootman, and D A Ruggiero
September 1981, The American journal of physiology,
A L Sica, and P M Gootman, and D A Ruggiero
May 1991, The American journal of physiology,
A L Sica, and P M Gootman, and D A Ruggiero
May 1984, Physiology & behavior,
A L Sica, and P M Gootman, and D A Ruggiero
July 1984, The American journal of physiology,
A L Sica, and P M Gootman, and D A Ruggiero
August 2019, Journal of anesthesia,
A L Sica, and P M Gootman, and D A Ruggiero
April 1991, The American journal of physiology,
A L Sica, and P M Gootman, and D A Ruggiero
March 1984, Physiology & behavior,
A L Sica, and P M Gootman, and D A Ruggiero
September 1993, Neuroscience letters,
Copied contents to your clipboard!