Influence of sodium butyrate on the induction of radiation-induced chromosomal aberrations and sister chromatid exchanges in Chinese hamster ovary (CHO) cells. 1999

C Johannes, and C Schunck, and J Hüsing, and G Obe
Department of Genetics, Universität GH Essen, Universitätsstrabetae 5, 45117, Essen, Germany.

CHO cells were pre-treated with sodium butyrate (SB) for 24 h and then X-irradiated in G1. Metaphases were scored for the induction of chromosomal aberrations and sister chromatid exchanges (SCEs). The data were compared with those obtained after irradiation of cells not pre-treated with SB and showed that SB has different effects on the endpoints examined. The frequencies of dicentric chromosomes were elevated and of small acentric rings (double minutes, DMs) reduced. These results are discussed to be a consequence of conformational changes in hyperacetylated chromatin which could lead to more interchromosomal and to less intrachromosomal exchanges. SB itself induces a few SCEs but suppresses the induction of SCEs by X-rays. We assume that a minor part of radiation induced SCEs are 'false' resulting from structural chromosomal aberrations, such as inversions, induced in G1. Inversions are the symmetrical counterparts of DMs. If inversions are suppressed by SB treatment to a similar extent as DMs a small reduction of SCEs by SB can be expected.

UI MeSH Term Description Entries
D002087 Butyrates Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure. Butyrate,n-Butyrate,Butanoic Acids,Butyric Acids,Acids, Butanoic,Acids, Butyric,n Butyrate
D002503 Centromere The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division. Centromeres
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012303 Ring Chromosomes Aberrant chromosomes with no ends, i.e., circular. Chromosomes, Ring,Chromosome, Ring,Ring Chromosome
D012854 Sister Chromatid Exchange An exchange of segments between the sister chromatids of a chromosome, either between the sister chromatids of a meiotic tetrad or between the sister chromatids of a duplicated somatic chromosome. Its frequency is increased by ultraviolet and ionizing radiation and other mutagenic agents and is particularly high in BLOOM SYNDROME. Chromatid Exchange, Sister,Chromatid Exchanges, Sister,Exchange, Sister Chromatid,Exchanges, Sister Chromatid,Sister Chromatid Exchanges
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations
D016193 G1 Phase The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors. First Gap Phase,G1a Phase,G1b Phase,Gap Phase 1,First Gap Phases,G1 Phases,G1a Phases,G1b Phases,Gap Phase, First,Gap Phases, First,Phase 1, Gap,Phase, First Gap,Phase, G1,Phase, G1a,Phase, G1b,Phases, First Gap,Phases, G1,Phases, G1a,Phases, G1b

Related Publications

C Johannes, and C Schunck, and J Hüsing, and G Obe
January 1995, Mutagenesis,
C Johannes, and C Schunck, and J Hüsing, and G Obe
February 2010, Journal of hazardous materials,
C Johannes, and C Schunck, and J Hüsing, and G Obe
January 1990, Environmental and molecular mutagenesis,
C Johannes, and C Schunck, and J Hüsing, and G Obe
October 1977, Mutation research,
C Johannes, and C Schunck, and J Hüsing, and G Obe
November 1982, Chemico-biological interactions,
Copied contents to your clipboard!