The human secretin receptor gene: genomic organization and promoter characterization. 1999

P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
Department of Zoology, The University of Hong Kong, SAR, PR China.

Secretin is the most potent regulator of pancreatic bicarbonate, electrolyte and volume secretion. In this report, the organization of the human secretin receptor (hSR) gene was characterized by overlapping genomic phage clones. The hSR gene consists of 13 exons and 12 introns with all the splice donor and acceptor sites conforming to the canonical GT/AG rule. By transient reporter gene assays, the wild-type promoter, containing 3.0 kb of the hSR gene 5' flanking region, was able to drive 5.8 +/- 0.6 and 6.6 +/- 0.2-fold (P < 0.01) increases in luciferase activities in pancreatic ductule-derived PANC-1 and BPD-1 cells, respectively. By subsequent 5' and 3' deletion analysis, a promoter element was identified within -408 to -158, relative to the ATG codon. This promoter element was found to be cell-specific since it could drive reporter gene expression in PANC-1 and BPD-1 cells but not in Hs 262.St, Hs 746T and alphaT3-1 cells. The study of the transcriptional control of human secretin and its receptor should shed light on the pathological developments of pancreatic cancer and autism in the future.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011964 Receptors, Gastrointestinal Hormone Cell surface proteins that bind gastrointestinal hormones with high affinity and trigger intracellular changes influencing the behavior of cells. Most gastrointestinal hormones also act as neurotransmitters so these receptors are also present in the central and peripheral nervous systems. Gastrointestinal Hormone Receptors,Intestinal Hormone Receptors,Receptors, Gastrointestinal Peptides,Gastrointestinal Hormone Receptor,Intestinal Hormone Receptor,Receptors, Gastrointestinal Hormones,Receptors, Intestinal Hormone,Gastrointestinal Hormones Receptors,Gastrointestinal Peptides Receptors,Hormone Receptor, Gastrointestinal,Hormone Receptor, Intestinal,Hormone Receptors, Gastrointestinal,Hormone Receptors, Intestinal,Hormones Receptors, Gastrointestinal,Peptides Receptors, Gastrointestinal,Receptor, Gastrointestinal Hormone,Receptor, Intestinal Hormone
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005091 Exons The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA. Mini-Exon,Exon,Mini Exon,Mini-Exons
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
April 1998, FEBS letters,
P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
February 2012, Neuroreport,
P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
August 1997, Genomics,
P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
July 2000, Gene,
P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
April 2001, American journal of physiology. Gastrointestinal and liver physiology,
P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
January 1997, Biochemical and biophysical research communications,
P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
September 1999, Diabetes,
P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
January 2003, Gene,
P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
September 1996, The Journal of biological chemistry,
P K Ho, and R S Fong, and H S Kai, and E H Lau, and E S Ngan, and C U Cotton, and B K Chow
January 2004, Gene,
Copied contents to your clipboard!