Transcriptional regulation of mouse delta-opioid receptor gene. 1999

H C Liu, and J T Shen, and L B Augustin, and J L Ko, and H H Loh
Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA. liuxx018@maroon.tc.umn.edu

Three major types of opioid receptors, mu (MOR), delta (DOR), and kappa (KOR), have been cloned and characterized. Each opioid receptor exhibits a distinct pharmacological profile as well as a distinct pattern of temporal and spatial expression in the brain, suggesting the critical role of transcription regulatory elements and their associated factors. Here, we report the identification of a minimum core promoter, in the 5'-flanking region of the mouse DOR gene, containing an E box and a GC box that are crucial for DOR promoter activity in NS20Y cells, a DOR-expressing mouse neuronal cell line. In vitro protein-DNA binding assays and in vivo transient transfection assays indicated that members of both the upstream stimulatory factor and Sp families of transcription factors bound to and trans-activated the DOR promoter via the E box and GC box, respectively. Furthermore, functional and physical interactions between these factors were critical for the basal as well as maximum promoter activity of the DOR gene. Thus, the distinct developmental emergence and brain regional distribution of the delta opioid receptor appear to be controlled, at least in part, by these two regulatory elements and their associated factors.

UI MeSH Term Description Entries
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

H C Liu, and J T Shen, and L B Augustin, and J L Ko, and H H Loh
November 2001, The Journal of biological chemistry,
H C Liu, and J T Shen, and L B Augustin, and J L Ko, and H H Loh
April 2002, The Journal of biological chemistry,
H C Liu, and J T Shen, and L B Augustin, and J L Ko, and H H Loh
October 1998, The Journal of biological chemistry,
H C Liu, and J T Shen, and L B Augustin, and J L Ko, and H H Loh
May 2004, The Journal of biological chemistry,
H C Liu, and J T Shen, and L B Augustin, and J L Ko, and H H Loh
August 2001, Molecular pharmacology,
H C Liu, and J T Shen, and L B Augustin, and J L Ko, and H H Loh
February 2000, Molecular pharmacology,
H C Liu, and J T Shen, and L B Augustin, and J L Ko, and H H Loh
February 1995, Biochemical and biophysical research communications,
H C Liu, and J T Shen, and L B Augustin, and J L Ko, and H H Loh
June 2005, Molecular pharmacology,
Copied contents to your clipboard!