Initial characterization of the vitamin D binding protein (Gc-globulin) binding site on the neutrophil plasma membrane: evidence for a chondroitin sulfate proteoglycan. 1999

S J DiMartino, and R R Kew
Department of Pathology, School of Medicine, State University of New York, Stony Brook 11794, USA.

The vitamin D binding protein (DBP) is a multifunctional plasma protein that can modulate certain immune and inflammatory responses. The diverse cellular functions of DBP appear to require cell surface binding to mediate these processes. Numerous reports have detected DBP bound to the surface of several cell types and would support the concept of a cell surface binding site for DBP. However, direct evidence for such a molecule has been lacking and essentially nothing is known about its basic biochemical properties. In the present study, radioiodinated DBP was used as a probe to characterize biochemically the neutrophil DBP binding site. Radiolabeled DBP binds to and remains associated with the plasma membrane and is not degraded. Quantitation of DBP binding to either intact cells or purified plasma membranes showed nonsaturable (linear) binding with positive cooperativity, possibly suggesting DBP oligomer formation. Solubilization of cell bound 125I-DBP with various nonionic and zwitterionic detergents demonstrated that DBP binds to a membrane macromolecule that partitions to the detergent insoluble fraction. Moreover, this molecule does not associate with the cytoskeleton. Cross-linking of radiolabeled DBP bound to plasma membranes increased the amount of protein that partitioned to the insoluble fraction, and analysis of these complexes by SDS-PAGE revealed that they may be very large since they did not enter the gel. Finally, treatment of plasma membranes with either proteases or chondroitinase ABC completely abrogated membrane binding of DBP, suggesting that the protein binds to a chondroitin sulfate proteoglycan.

UI MeSH Term Description Entries
D007457 Iodine Radioisotopes Unstable isotopes of iodine that decay or disintegrate emitting radiation. I atoms with atomic weights 117-139, except I 127, are radioactive iodine isotopes. Radioisotopes, Iodine
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008970 Molecular Weight The sum of the weight of all the atoms in a molecule. Molecular Weights,Weight, Molecular,Weights, Molecular
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011508 Chondroitin Sulfate Proteoglycans Proteoglycans consisting of proteins linked to one or more CHONDROITIN SULFATE-containing oligosaccharide chains. Proteochondroitin Sulfates,Chondroitin Sulfate Proteoglycan,Proteochondroitin Sulfate,Proteoglycan, Chondroitin Sulfate,Proteoglycans, Chondroitin Sulfate,Sulfate Proteoglycan, Chondroitin,Sulfate Proteoglycans, Chondroitin
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002634 Chemotaxis, Leukocyte The movement of leukocytes in response to a chemical concentration gradient or to products formed in an immunologic reaction. Leukotaxis,Leukocyte Chemotaxis
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking

Related Publications

S J DiMartino, and R R Kew
June 1995, The Journal of steroid biochemistry and molecular biology,
S J DiMartino, and R R Kew
August 1989, Endocrine reviews,
S J DiMartino, and R R Kew
February 1995, Nihon rinsho. Japanese journal of clinical medicine,
S J DiMartino, and R R Kew
September 1999, Nihon rinsho. Japanese journal of clinical medicine,
S J DiMartino, and R R Kew
March 1980, The Journal of biological chemistry,
S J DiMartino, and R R Kew
November 1990, Endocrinology,
S J DiMartino, and R R Kew
December 1989, The Journal of cell biology,
Copied contents to your clipboard!