Characterization of [3H]thiocolchicoside binding sites in rat spinal cord and cerebral cortex. 1999

W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
Istituto di Farmacologia e Farmacognosia, Università di Urbino, Italy. balduini@fis.uniurb.it

Thiocolchicoside, a semi-synthetic derivative of the naturally occurring compound colchicoside with a relaxant effect on skeletal muscle, has been found to displace both [3H]gamma-aminobutyric acid ([3H]GABA) and [3H]strychnine binding, suggesting an interaction with both GABA and strychnine-sensitive glycine receptors. In order to gain further insight into the interaction of thiocolchicoside with these receptors, the binding of [3H]thiocolchicoside in rat spinal cord-brainstem and cortical synaptic membranes was characterized. [3H]Thiocolchicoside binding was saturable in both tissues examined. In spinal cord-brainstem membranes, we found a K(D) of 254 +/- 47 nM and a Bmax of 2.39 +/- 0.36 pmol/mg protein, whereas in cortical membranes, a K(D) of 176 nM and a Bmax of 4.20 pmol/mg protein was observed. A similar K(D) value was found in kinetic experiments performed in spinal cord-brainstem membranes. Heterologous displacement experiments showed that GABA and strychnine displaced the binding in a dose-dependent manner, whereas glycine was ineffective. [3H]Thiocolchicoside binding was also displaced by several GABA(A) receptor agonists and antagonists, but not by baclofen, flunitrazepam, guvacine, picrotoxin or by other drugs unrelated to GABA transmission. In spinal cord-brainstem, and to a lower extent, in cortical membranes, GABA and its analogs were not able to completely displace [3H]thiocolchicoside specific binding indicating that, besides GABA(A) receptors, thiocolchicoside can bind to another unidentified site. Unlabelled thiocolchicoside, however, completely displaced [3H]muscimol binding both in cortical and in spinal cord-brainstem synaptic membranes with an IC50 in the low microM range. Neurosteroids were found to modulate the binding in cortical but not in spinal cord-brainstem synaptic membranes. We conclude that [3H]thiocolchicoside binding shows a pharmacological profile indicating an interaction with the GABA(A) receptor. The different affinities for the GABA(A) receptor agonists and antagonists and sensitivity to neurosteroids obtained in the cerebral cortex and in the spinal cord may indicate a preferential interaction of the compound with a subtype of the GABA(A) receptor. The data also indicate that [3H]thiocolchicoside binds to another site(s), whose nature remains to be elucidated.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009118 Muscimol A neurotoxic isoxazole isolated from species of AMANITA. It is obtained by decarboxylation of IBOTENIC ACID. Muscimol is a potent agonist of GABA-A RECEPTORS and is used mainly as an experimental tool in animal and tissue studies. Agarin,Pantherine
D009465 Neuromuscular Agents Drugs used for their actions on skeletal muscle. Included are agents that act directly on skeletal muscle, those that alter neuromuscular transmission (NEUROMUSCULAR BLOCKING AGENTS), and drugs that act centrally as skeletal muscle relaxants (MUSCLE RELAXANTS, CENTRAL). Drugs used in the treatment of movement disorders are ANTI-DYSKINESIA AGENTS. Skeletal Muscle Relaxants,Neuromuscular Effect,Neuromuscular Effects,Agents, Neuromuscular,Effect, Neuromuscular,Effects, Neuromuscular,Muscle Relaxants, Skeletal,Relaxants, Skeletal Muscle
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D001933 Brain Stem The part of the brain that connects the CEREBRAL HEMISPHERES with the SPINAL CORD. It consists of the MESENCEPHALON; PONS; and MEDULLA OBLONGATA. Brainstem,Truncus Cerebri,Brain Stems,Brainstems,Cerebri, Truncus,Cerebrus, Truncus,Truncus Cerebrus
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003078 Colchicine A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). Colchicine, (+-)-Isomer,Colchicine, (R)-Isomer
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
December 1996, European journal of pharmacology,
W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
November 1988, The Journal of pharmacology and experimental therapeutics,
W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
April 1994, Neurochemistry international,
W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
August 1983, Journal of neurochemistry,
W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
October 1985, FEBS letters,
W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
February 1991, Pharmacological research,
W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
December 1994, Sheng li xue bao : [Acta physiologica Sinica],
W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
January 1981, Progress in neuro-psychopharmacology,
W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
January 1992, Journal of receptor research,
W Balduini, and M Cimino, and H Depoortere, and F Cattabeni
August 1987, Neuropharmacology,
Copied contents to your clipboard!