Role of CYP1A2 in the toxicity of long-term phenacetin feeding in mice. 1999

J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
Laboratory of Metabolism, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA. jpeters@helix.nih.gov

The mechanisms underlying phenacetin-induced toxicity and carcinogenicity are not clear. In particular, it is not known whether these effects are mediated by metabolic activation of the drug. CYP1A2 is known to metabolize phenacetin in vitro. To determine the role of this enzyme in vivo, the toxicity and carcinogenicity of phenacetin was examined in Cyp1a2-null mice (that lack CYP1A2). Six- to 8-week-old wild type (+/+) or null (-/-) mice were fed either a control diet, or one containing 1.25% phenacetin, ad libitum for up to 67 weeks. Representative groups of mice were examined for phenacetin-induced toxicity and carcinogenicity after 36, 48, 58, or 67 weeks of feeding. Consistent with the known role of CYP1A2 in phenacetin metabolism, plasma levels of phenacetin were higher and acetaminophen levels lower in the (-/-) mice fed phenacetin compared to phenacetin-fed (+/+) controls. Weight gain was significantly depressed in both groups of phenacetin-fed mice after 4 weeks of feeding, and continued to be lower for the remainder of the experiment, compared to controls. Hepatomegaly and splenomegaly were more severe in (-/-) mice but present in both genotypes fed phenacetin at all time points assessed. Histological analysis of liver, kidney, spleen, and urogenital tract also revealed a differential response in the (-/-) mice fed phenacetin compared to (+/+) mice fed the same diet. Further, mortality was the most severe in the (-/-) mice fed phenacetin than in all other groups. Despite significant toxicity in (-/-) mice fed phenacetin, only one renal carcinoma was found among them. Results from this work demonstrate that, in the absence of CYP1A2, phenacetin is more toxic than in controls. This provides evidence that metabolism of phenacetin by CYP1A2 alters toxicity in vivo, and suggests that alternate CYP1A2-independent metabolic pathways contribute to its toxicity.

UI MeSH Term Description Entries
D007680 Kidney Neoplasms Tumors or cancers of the KIDNEY. Cancer of Kidney,Kidney Cancer,Renal Cancer,Cancer of the Kidney,Neoplasms, Kidney,Renal Neoplasms,Cancer, Kidney,Cancer, Renal,Cancers, Kidney,Cancers, Renal,Kidney Cancers,Kidney Neoplasm,Neoplasm, Kidney,Neoplasm, Renal,Neoplasms, Renal,Renal Cancers,Renal Neoplasm
D008297 Male Males
D009929 Organ Size The measurement of an organ in volume, mass, or heaviness. Organ Volume,Organ Weight,Size, Organ,Weight, Organ
D010615 Phenacetin A phenylacetamide that was formerly used in ANALGESICS but nephropathy and METHEMOGLOBINEMIA led to its withdrawal from the market. (From Smith and Reynard, Textbook of Pharmacology,1991, p431) Acetophenetidin
D001743 Urinary Bladder A musculomembranous sac along the URINARY TRACT. URINE flows from the KIDNEYS into the bladder via the ureters (URETER), and is held there until URINATION. Bladder,Bladder Detrusor Muscle,Detrusor Urinae,Bladder Detrusor Muscles,Bladder, Urinary,Detrusor Muscle, Bladder,Detrusor Muscles, Bladder
D002273 Carcinogens Substances that increase the risk of NEOPLASMS in humans or animals. Both genotoxic chemicals, which affect DNA directly, and nongenotoxic chemicals, which induce neoplasms by other mechanism, are included. Carcinogen,Oncogen,Oncogens,Tumor Initiator,Tumor Initiators,Tumor Promoter,Tumor Promoters,Initiator, Tumor,Initiators, Tumor,Promoter, Tumor,Promoters, Tumor
D002277 Carcinoma A malignant neoplasm made up of epithelial cells tending to infiltrate the surrounding tissues and give rise to metastases. It is a histological type of neoplasm and not a synonym for "cancer." Carcinoma, Anaplastic,Carcinoma, Spindle-Cell,Carcinoma, Undifferentiated,Carcinomatosis,Epithelial Neoplasms, Malignant,Epithelioma,Epithelial Tumors, Malignant,Malignant Epithelial Neoplasms,Neoplasms, Malignant Epithelial,Anaplastic Carcinoma,Anaplastic Carcinomas,Carcinoma, Spindle Cell,Carcinomas,Carcinomatoses,Epithelial Neoplasm, Malignant,Epithelial Tumor, Malignant,Epitheliomas,Malignant Epithelial Neoplasm,Malignant Epithelial Tumor,Malignant Epithelial Tumors,Neoplasm, Malignant Epithelial,Spindle-Cell Carcinoma,Spindle-Cell Carcinomas,Tumor, Malignant Epithelial,Undifferentiated Carcinoma,Undifferentiated Carcinomas
D005260 Female Females
D000082 Acetaminophen Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage. Acetamidophenol,Hydroxyacetanilide,Paracetamol,APAP,Acamol,Acephen,Acetaco,Acetominophen,Algotropyl,Anacin-3,Datril,N-(4-Hydroxyphenyl)acetanilide,N-Acetyl-p-aminophenol,Panadol,Tylenol,p-Acetamidophenol,p-Hydroxyacetanilide,Anacin 3,Anacin3
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
April 1982, International journal of cancer,
J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
February 1979, Gan,
J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
February 2012, Drug metabolism and disposition: the biological fate of chemicals,
J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
September 1976, Acta pathologica et microbiologica Scandinavica. Section A, Pathology,
J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
November 1998, Toxicology and applied pharmacology,
J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
October 1974, Food and cosmetics toxicology,
J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
April 1975, Food and cosmetics toxicology,
J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
October 1973, Food and cosmetics toxicology,
J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
July 1978, Toxicology,
J M Peters, and H Morishima, and J M Ward, and C J Coakley, and S Kimura, and F J Gonzalez
October 1976, Food and cosmetics toxicology,
Copied contents to your clipboard!