Presynaptic inhibition preferentially reduces in NMDA receptor-mediated component of transmission in rat midbrain dopamine neurons. 1999

Y N Wu, and K Z Shen, and S W Johnson
Department of Physiology and Pharmacology, Oregon Health Sciences University, Portland 97201, USA.

We used patch pipettes to record whole-cell currents from single dopamine neurons in slices of rat midbrain. Pharmacological methods were used to isolate EPSCs evoked by focal electrical stimulation. Baclofen was significantly more potent for inhibiting NMDA receptor-mediated EPSCs (IC50=0.24 microM) compared with inhibition of EPSCs mediated by AMPA receptors (IC50=1.72 microM). The increased potency of baclofen for inhibiting the NMDA component persisted in superfusate that contained zero Mg2+ and when postsynaptic K+ conductances were reduced by Cs+ and QX-314. Effects of baclofen on EPSCs were blocked by the GABA(B) receptor antagonist CGP-35348. Adenosine was 20 fold more potent for reducing the NMDA component of transmission (IC50=31 microM) compared with inhibition of AMPA receptor-mediated EPSCs (IC50=654 microM). Effects of adenosine on EPSCs were blocked by the A1 receptor antagonist DPCPX. Both baclofen and adenosine significantly increased the ratio of EPSCs in paired-pulse studies, suggesting presynaptic sites of action. Although adenosine (1 mM) did not reduce currents evoked by exogenous NMDA (10 microM), baclofen (1 microM) reduced NMDA currents by 29%. Neither baclofen nor adenosine altered currents evoked by exogenous AMPA (1 microM). We conclude that adenosine acts at presynaptic A1 receptors to cause a preferential reduction in the NMDA component of synaptic transmission. In contrast, baclofen preferentially reduces NMDA EPSCs by acting at both pre- and postsynaptic GABA(B) receptors. By regulating NMDA receptor function, A1 and GABA(B) receptors may play important roles in regulating the excitability of dopamine neurons.

UI MeSH Term Description Entries
D008012 Lidocaine A local anesthetic and cardiac depressant used as an antiarrhythmia agent. Its actions are more intense and its effects more prolonged than those of PROCAINE but its duration of action is shorter than that of BUPIVACAINE or PRILOCAINE. Lignocaine,2-(Diethylamino)-N-(2,6-Dimethylphenyl)Acetamide,2-2EtN-2MePhAcN,Dalcaine,Lidocaine Carbonate,Lidocaine Carbonate (2:1),Lidocaine Hydrocarbonate,Lidocaine Hydrochloride,Lidocaine Monoacetate,Lidocaine Monohydrochloride,Lidocaine Monohydrochloride, Monohydrate,Lidocaine Sulfate (1:1),Octocaine,Xylesthesin,Xylocaine,Xylocitin,Xyloneural
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008636 Mesencephalon The middle of the three primitive cerebral vesicles of the embryonic brain. Without further subdivision, midbrain develops into a short, constricted portion connecting the PONS and the DIENCEPHALON. Midbrain contains two major parts, the dorsal TECTUM MESENCEPHALI and the ventral TEGMENTUM MESENCEPHALI, housing components of auditory, visual, and other sensorimoter systems. Midbrain,Mesencephalons,Midbrains
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002586 Cesium A member of the alkali metals. It has an atomic symbol Cs, atomic number 55, and atomic weight 132.91. Cesium has many industrial applications, including the construction of atomic clocks based on its atomic vibrational frequency. Caesium,Caesium-133,Cesium-133,Caesium 133,Cesium 133
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

Y N Wu, and K Z Shen, and S W Johnson
July 2018, Neuropharmacology,
Y N Wu, and K Z Shen, and S W Johnson
August 2003, Journal of neurophysiology,
Y N Wu, and K Z Shen, and S W Johnson
April 2022, Cell reports,
Y N Wu, and K Z Shen, and S W Johnson
May 1995, The Journal of pharmacology and experimental therapeutics,
Y N Wu, and K Z Shen, and S W Johnson
March 2016, Neuropharmacology,
Copied contents to your clipboard!