Electromagnetic thermal therapy power optimization for multiple source applicators. 1999

S K Das, and S T Clegg, and T V Samulski
Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA. shiva@radonc.duke.edu

The optimization of power deposition for electromagnetic (EM) thermal therapy is investigated. Several goal or objective functions are examined using a generalized mathematical formulation. These include maximization of: (1) target power absorption, (2) the ratio of target to non-target power absorption, (3) target power absorption weighted by the ratio of target to non-target power absorption, and (4) target power absorption subject to the constraint that the non-target high power volume ('hot spot' volume) is below a chosen level. The merit of these functions was retrospectively tested using an anatomic data base containing 38 cancer patients that were clinically heated with EM phased arrays. CT and/or MRI image data were used to define relevant anatomic geometries and tissue properties for finite element numerical models. Power optimization is achieved by variation of seven available control parameters (four amplitudes and three phases) for these clinical array devices. The results indicate that site dependent improvements in target power absorption can be achieved using these goal functions relative to a configuration that utilizes equal phase and amplitude for the sources. The relative merit among these various functions favours an optimization strategy that maximizes the target power absorption weighted by the ratio of target power to non-target power absorption.

UI MeSH Term Description Entries
D006979 Hyperthermia, Induced Abnormally high temperature intentionally induced in living things regionally or whole body. It is most often induced by radiation (heat waves, infra-red), ultrasound, or drugs. Fever Therapy,Hyperthermia, Local,Hyperthermia, Therapeutic,Thermotherapy,Induced Hyperthermia,Therapeutic Hyperthermia,Therapy, Fever,Local Hyperthermia
D008297 Male Males
D008962 Models, Theoretical Theoretical representations that simulate the behavior or activity of systems, processes, or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Experimental Model,Experimental Models,Mathematical Model,Model, Experimental,Models (Theoretical),Models, Experimental,Models, Theoretic,Theoretical Study,Mathematical Models,Model (Theoretical),Model, Mathematical,Model, Theoretical,Models, Mathematical,Studies, Theoretical,Study, Theoretical,Theoretical Model,Theoretical Models,Theoretical Studies
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D010146 Pain An unpleasant sensation induced by noxious stimuli which are detected by NERVE ENDINGS of NOCICEPTIVE NEURONS. Suffering, Physical,Ache,Pain, Burning,Pain, Crushing,Pain, Migratory,Pain, Radiating,Pain, Splitting,Aches,Burning Pain,Burning Pains,Crushing Pain,Crushing Pains,Migratory Pain,Migratory Pains,Pains, Burning,Pains, Crushing,Pains, Migratory,Pains, Radiating,Pains, Splitting,Physical Suffering,Physical Sufferings,Radiating Pain,Radiating Pains,Splitting Pain,Splitting Pains,Sufferings, Physical
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001703 Biophysics The study of PHYSICAL PHENOMENA and PHYSICAL PROCESSES as applied to living things. Mechanobiology
D055590 Electromagnetic Phenomena Characteristics of ELECTRICITY and magnetism such as charged particles and the properties and behavior of charged particles, and other phenomena related to or associated with electromagnetism. Electrical Concepts,Electromagnetic Concepts,Electrical Phenomena,Electrical Phenomenon,Electromagnetic Phenomenon,Electromagnetics,Concept, Electrical,Concept, Electromagnetic,Concepts, Electrical,Concepts, Electromagnetic,Electrical Concept,Electromagnetic Concept,Electromagnetic Phenomenas,Phenomena, Electrical,Phenomena, Electromagnetic,Phenomenon, Electrical,Phenomenon, Electromagnetic
D055592 Biophysical Phenomena The physical characteristics and processes of biological systems. Biophysical Concepts,Biophysical Processes,Biophysical Phenomenon,Biophysical Process,Biophysical Concept,Concept, Biophysical,Concepts, Biophysical,Phenomena, Biophysical,Phenomenon, Biophysical,Process, Biophysical,Processes, Biophysical

Related Publications

S K Das, and S T Clegg, and T V Samulski
January 1987, The Journal of microwave power and electromagnetic energy : a publication of the International Microwave Power Institute,
S K Das, and S T Clegg, and T V Samulski
February 1977, The British journal of radiology,
S K Das, and S T Clegg, and T V Samulski
October 2001, Medical physics,
S K Das, and S T Clegg, and T V Samulski
October 1995, IEEE transactions on bio-medical engineering,
S K Das, and S T Clegg, and T V Samulski
September 2012, The Review of scientific instruments,
S K Das, and S T Clegg, and T V Samulski
April 2002, Physics in medicine and biology,
S K Das, and S T Clegg, and T V Samulski
May 2006, Medical physics,
S K Das, and S T Clegg, and T V Samulski
January 1999, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
S K Das, and S T Clegg, and T V Samulski
March 1983, Physics in medicine and biology,
Copied contents to your clipboard!