Analysis of stress distribution in the alveolar septa of normal and simulated emphysematic lungs. 1999

A Gefen, and D Elad, and R J Shiner
Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Israel.

The alveolar septum consists of a skeleton of fine collagen and elastin fibers, which are interlaced with a capillary network. Its mechanical characteristics play an important role in the overall performance of the lung. An alveolar sac model was developed for numerical analysis of the internal stress distribution and septal displacements within the alveoli of both normal and emphysematic saline-filled lungs. A scanning electron micrograph of the parenchyma was digitized to yield a geometric replica of a typical two-dimensional alveolar sac. The stress-strain relationship of the alveolar tissue was adopted from experimental data. The model was solved by using commercial finite-element software for quasi-static loading of alveolar pressure. Investigation of the state of stresses and displacements in a healthy lung simulation yielded values that compared well with experimentally reported data. Alteration of the mechanical characteristics of the alveolar septa to simulate elastin destruction in the emphysematic model induced significant stress concentrations (e.g., at a lung volume of 60% total capacity, tensions at certain parts in an emphysematic lung were up to 6 times higher than those in a normal lung). The combination of highly elevated stress sites together with the cyclic loading of breathing may explain the observed progressive damage to elastin fibers in emphysematic patients.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D008170 Lung Compliance The capability of the LUNGS to distend under pressure as measured by pulmonary volume change per unit pressure change. While not a complete description of the pressure-volume properties of the lung, it is nevertheless useful in practice as a measure of the comparative stiffness of the lung. (From Best & Taylor's Physiological Basis of Medical Practice, 12th ed, p562) Compliance, Lung,Compliances, Lung,Lung Compliances
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011312 Pressure A type of stress exerted uniformly in all directions. Its measure is the force exerted per unit area. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed) Pressures
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D011656 Pulmonary Emphysema Enlargement of air spaces distal to the TERMINAL BRONCHIOLES where gas-exchange normally takes place. This is usually due to destruction of the alveolar wall. Pulmonary emphysema can be classified by the location and distribution of the lesions. Emphysema, Pulmonary,Centriacinar Emphysema,Centrilobular Emphysema,Emphysemas, Pulmonary,Focal Emphysema,Panacinar Emphysema,Panlobular Emphysema,Pulmonary Emphysemas,Centriacinar Emphysemas,Centrilobular Emphysemas,Emphysema, Centriacinar,Emphysema, Centrilobular,Emphysema, Focal,Emphysema, Panacinar,Emphysema, Panlobular,Emphysemas, Centriacinar,Emphysemas, Centrilobular,Emphysemas, Focal,Emphysemas, Panacinar,Emphysemas, Panlobular,Focal Emphysemas,Panacinar Emphysemas,Panlobular Emphysemas
D012119 Respiration The act of breathing with the LUNGS, consisting of INHALATION, or the taking into the lungs of the ambient air, and of EXHALATION, or the expelling of the modified air which contains more CARBON DIOXIDE than the air taken in (Blakiston's Gould Medical Dictionary, 4th ed.). This does not include tissue respiration ( Breathing
D002196 Capillaries The minute vessels that connect arterioles and venules. Capillary Beds,Sinusoidal Beds,Sinusoids,Bed, Sinusoidal,Beds, Sinusoidal,Capillary,Capillary Bed,Sinusoid,Sinusoidal Bed
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen

Related Publications

A Gefen, and D Elad, and R J Shiner
April 1980, Laboratory investigation; a journal of technical methods and pathology,
A Gefen, and D Elad, and R J Shiner
August 1993, Journal of applied physiology (Bethesda, Md. : 1985),
A Gefen, and D Elad, and R J Shiner
October 1996, American journal of respiratory cell and molecular biology,
A Gefen, and D Elad, and R J Shiner
January 1963, British medical bulletin,
A Gefen, and D Elad, and R J Shiner
July 1968, Journal of biomechanics,
A Gefen, and D Elad, and R J Shiner
May 1982, Nihon Kyobu Shikkan Gakkai zasshi,
A Gefen, and D Elad, and R J Shiner
November 1969, The Histochemical journal,
A Gefen, and D Elad, and R J Shiner
March 1965, Annals of the New York Academy of Sciences,
A Gefen, and D Elad, and R J Shiner
August 1979, Journal of applied physiology: respiratory, environmental and exercise physiology,
Copied contents to your clipboard!