Absence of host-site influence on angiogenesis, blood flow, and permeability in transplanted RG-2 gliomas. 1999

P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
Department of Neurology, Northwestern University Medical School, Evanston Northwestern Healthcare, Evanston, Illinois, USA.

The host site is believed to regulate tumor angiogenesis, which could result in site-dependent drug delivery parameters, greatly affecting experimental tumor research. In RG-2 rat gliomas we measured cellular proliferation; cell cycle time was the same for RG-2 cells in brain and s.c. tumors (25 h), and was the same for endothelial cells in these tumors (46 h). We measured the transcapillary transfer constant (K) of alpha-aminoisobutyric acid and blood flow (F) with iodoantipyrine in RG-2 gliomas transplanted into brain, liver, kidney, muscle, s.c. tissue, and into the abdominal cavity. Data was evaluated by quantitative autoradiography and direct tissue sampling. The variation of F (12.6-84.0 ml/g/min) and K (26.1-49.2 microl/g/min) in RG-2 tumors in the different host sites was less than in surrounding tumor-free tissue (F = 20-1500 ml/g/min and K = 1.6-700 microl/g/min). In contrast to other models, RG-2 does not result in tumors with host site-dependent behavior. The RG-2 tumor cells appear to participate in, if not dominate, the angiogenesis process regardless of the host site. Values of F and K were more dependent on tumor topography (center versus periphery) and local histological features (necrosis versus viable tumor) than host site. We believe that the methods used for data acquisition may introduce as much variability in Results as the tumors themselves and that to better understand how tumor angiogenesis affects the vascular phenotype, comparative studies are needed to validate the results obtained with newer methodologies.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D009389 Neovascularization, Pathologic A pathologic process consisting of the proliferation of blood vessels in abnormal tissues or in abnormal positions. Angiogenesis, Pathologic,Angiogenesis, Pathological,Neovascularization, Pathological,Pathologic Angiogenesis,Pathologic Neovascularization,Pathological Angiogenesis,Pathological Neovascularization
D010539 Permeability Property of membranes and other structures to permit passage of light, heat, gases, liquids, metabolites, and mineral ions. Permeabilities
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001932 Brain Neoplasms Neoplasms of the intracranial components of the central nervous system, including the cerebral hemispheres, basal ganglia, hypothalamus, thalamus, brain stem, and cerebellum. Brain neoplasms are subdivided into primary (originating from brain tissue) and secondary (i.e., metastatic) forms. Primary neoplasms are subdivided into benign and malignant forms. In general, brain tumors may also be classified by age of onset, histologic type, or presenting location in the brain. Brain Cancer,Brain Metastases,Brain Tumors,Cancer of Brain,Malignant Primary Brain Tumors,Neoplasms, Intracranial,Benign Neoplasms, Brain,Brain Neoplasm, Primary,Brain Neoplasms, Benign,Brain Neoplasms, Malignant,Brain Neoplasms, Malignant, Primary,Brain Neoplasms, Primary Malignant,Brain Tumor, Primary,Brain Tumor, Recurrent,Cancer of the Brain,Intracranial Neoplasms,Malignant Neoplasms, Brain,Malignant Primary Brain Neoplasms,Neoplasms, Brain,Neoplasms, Brain, Benign,Neoplasms, Brain, Malignant,Neoplasms, Brain, Primary,Primary Brain Neoplasms,Primary Malignant Brain Neoplasms,Primary Malignant Brain Tumors,Benign Brain Neoplasm,Benign Brain Neoplasms,Benign Neoplasm, Brain,Brain Benign Neoplasm,Brain Benign Neoplasms,Brain Cancers,Brain Malignant Neoplasm,Brain Malignant Neoplasms,Brain Metastase,Brain Neoplasm,Brain Neoplasm, Benign,Brain Neoplasm, Malignant,Brain Neoplasms, Primary,Brain Tumor,Brain Tumors, Recurrent,Cancer, Brain,Intracranial Neoplasm,Malignant Brain Neoplasm,Malignant Brain Neoplasms,Malignant Neoplasm, Brain,Neoplasm, Brain,Neoplasm, Intracranial,Primary Brain Neoplasm,Primary Brain Tumor,Primary Brain Tumors,Recurrent Brain Tumor,Recurrent Brain Tumors,Tumor, Brain
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
July 1983, Cancer research,
P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
January 1995, Journal of neuro-oncology,
P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
July 1983, Cancer research,
P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
March 2017, European journal of nuclear medicine and molecular imaging,
P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
May 2017, Journal of nuclear medicine : official publication, Society of Nuclear Medicine,
P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
October 1984, Journal of applied physiology: respiratory, environmental and exercise physiology,
P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
December 1987, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism,
P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
May 1979, European journal of cancer,
P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
September 2006, Journal of neuro-oncology,
P Molnar, and I Fekete, and K E Schlageter, and G D Lapin, and D R Groothuis
December 1979, Journal of endodontics,
Copied contents to your clipboard!