The effect of spermatozoa and seminal plasma on leukocyte migration into the uterus of gilts. 1999

K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
Department of Animal Science, University of Minnesota, St. Paul 55108, USA.

Yorkshire x Landrace gilts were used to determine the effect of spermatozoa and seminal plasma on postbreeding uterine leukocyte influx. Estrus detection was performed with a boar at 12-h intervals following synchronization with 400 IU eCG and 200 IU of hCG. All gilts were AI once, 24 h after the detection of estrus following random assignment to a 2x2x3 factorial arrangement of treatments (sperm or sperm-free AI doses), AI dose medium (seminal plasma or PBS), and lavage time following AI. Gilts were treated with sperm (5x10(9) spermatozoa; SPZ; n = 30) or sperm-free (SF; n = 30) doses containing either 100 mL of seminal plasma (SP; n = 15/treatment) or PBS (n = 15/treatment). Uterine lavage was performed once on each gilt (n = 20/time) at one of three times after AI (6, 12, or 36 h) to determine the total number of uterine leukocytes. The leukocytes consisted predominately (92 to 99%) of polymorphonuclear neutrophilic granulocytes (PMN). There was an AI x medium interaction on uterine PMN numbers. The number of uterine PMN recovered from gilts inseminated with sperm suspended in PBS was greater than the number of PMN recovered from the uterine lumen of gilts inseminated with sperm in SP, SP alone, or PBS alone (P<.05). Furthermore, SP accelerated the rate of uterine clearance when suspended with sperm cells during the first 36 h following AI (P<.05). These results indicate that seminal plasma suppresses PMN migration into the uterus following breeding and enhances the rate of disappearance of uterine inflammation.

UI MeSH Term Description Entries
D007507 Therapeutic Irrigation The washing of a body cavity or surface by flowing water or solution for therapy or diagnosis. Douching,Lavage,Douchings,Irrigation, Therapeutic,Irrigations, Therapeutic,Lavages,Therapeutic Irrigations
D007962 Leukocytes White blood cells. These include granular leukocytes (BASOPHILS; EOSINOPHILS; and NEUTROPHILS) as well as non-granular leukocytes (LYMPHOCYTES and MONOCYTES). Blood Cells, White,Blood Corpuscles, White,White Blood Cells,White Blood Corpuscles,Blood Cell, White,Blood Corpuscle, White,Corpuscle, White Blood,Corpuscles, White Blood,Leukocyte,White Blood Cell,White Blood Corpuscle
D008297 Male Males
D011550 Pseudomonas aeruginosa A species of gram-negative, aerobic, rod-shaped bacteria commonly isolated from clinical specimens (wound, burn, and urinary tract infections). It is also found widely distributed in soil and water. P. aeruginosa is a major agent of nosocomial infection. Bacillus aeruginosus,Bacillus pyocyaneus,Bacterium aeruginosum,Bacterium pyocyaneum,Micrococcus pyocyaneus,Pseudomonas polycolor,Pseudomonas pyocyanea
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012661 Semen The thick, yellowish-white, viscid fluid secretion of male reproductive organs discharged upon ejaculation. In addition to reproductive organ secretions, it contains SPERMATOZOA and their nutrient plasma. Seminal Plasma,Plasma, Seminal
D013094 Spermatozoa Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility. Sperm,Spermatozoon,X-Bearing Sperm,X-Chromosome-Bearing Sperm,Y-Bearing Sperm,Y-Chromosome-Bearing Sperm,Sperm, X-Bearing,Sperm, X-Chromosome-Bearing,Sperm, Y-Bearing,Sperm, Y-Chromosome-Bearing,Sperms, X-Bearing,Sperms, X-Chromosome-Bearing,Sperms, Y-Bearing,Sperms, Y-Chromosome-Bearing,X Bearing Sperm,X Chromosome Bearing Sperm,X-Bearing Sperms,X-Chromosome-Bearing Sperms,Y Bearing Sperm,Y Chromosome Bearing Sperm,Y-Bearing Sperms,Y-Chromosome-Bearing Sperms
D013210 Staphylococcus A genus of gram-positive, facultatively anaerobic, coccoid bacteria. Its organisms occur singly, in pairs, and in tetrads and characteristically divide in more than one plane to form irregular clusters. Natural populations of Staphylococcus are found on the skin and mucous membranes of warm-blooded animals. Some species are opportunistic pathogens of humans and animals.

Related Publications

K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
January 1980, Acta veterinaria Scandinavica,
K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
June 2005, Theriogenology,
K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
January 1967, International journal of fertility,
K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
August 2012, Reproduction in domestic animals = Zuchthygiene,
K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
November 2000, Animal reproduction science,
K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
January 1980, Acta veterinaria Scandinavica,
K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
August 1998, Human reproduction (Oxford, England),
K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
January 1990, Andrologia,
K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
April 2022, Journal of proteomics,
K J Rozeboom, and M H Troedsson, and T W Molitor, and B G Crabo
April 1991, Veterinary and human toxicology,
Copied contents to your clipboard!