Mutations that increase acidity enhance the transcriptional activity of the glutamine-rich activation domain in stage-specific activator protein. 1999

M L Benuck, and Z Li, and G Childs
Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.

Sea urchin stage-specific activator protein (SSAP) activates transcription of the late H1 gene at the mid-blastula stage of development. Its C-terminal 202 amino acids form a potent glycine/glutamine rich activation domain (GQ domain) that can transactivate reporter genes to levels 5-fold higher than VP16 in several mammalian cell lines. We observed that, unlike other glutamine-rich activation domains, the GQ domain activates transcription to moderate levels in yeast. We utilized this activity to screen in yeast for intragenic mutations that enhance or inhibit the transcriptional activity of the GQ domain. We identified 37 loss of function and 23 gain of function mutants. Most gain of function mutations increased the acidity of the domain. The most frequently isolated mutations conferred enhanced transcriptional activity when assayed in mammalian cells. These mutations also enhance the ability of SSAP to up-regulate the late H1 promoter in sea urchin embryos. We conclude that the GQ domain fundamentally differs from other glutamine-rich activators and may share some properties of acidic activators. The ability of acidity to enhance SSAP-mediated transcription may reflect a mechanism by which phosphorylation of SSAP activates late H1 gene transcription during embryogenesis.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine
D006657 Histones Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each. Histone,Histone H1,Histone H1(s),Histone H2a,Histone H2b,Histone H3,Histone H3.3,Histone H4,Histone H5,Histone H7
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012617 Sea Urchins Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT. Echinoidea,Sand-Dollar,Clypeasteroida,Sand Dollars,Clypeasteroidas,Dollar, Sand,Dollars, Sand,Echinoideas,Sand Dollar,Sand-Dollars,Sea Urchin,Urchin, Sea,Urchins, Sea
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D018507 Gene Expression Regulation, Developmental Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism. Developmental Gene Expression Regulation,Embryologic Gene Expression Regulation,Gene Expression Regulation, Embryologic,Regulation of Gene Expression, Developmental,Regulation of Gene Expression, Embryologic,Regulation, Gene Expression, Developmental,Regulation, Gene Expression, Embryologic

Related Publications

M L Benuck, and Z Li, and G Childs
March 1990, Proceedings of the National Academy of Sciences of the United States of America,
M L Benuck, and Z Li, and G Childs
October 1999, The Journal of biological chemistry,
M L Benuck, and Z Li, and G Childs
August 1997, The Journal of biological chemistry,
M L Benuck, and Z Li, and G Childs
December 2004, Molecular and cellular biology,
M L Benuck, and Z Li, and G Childs
June 2000, The Journal of biological chemistry,
Copied contents to your clipboard!