Connections between cells of the internal capsule, thalamus, and cerebral cortex in embryonic rat. 1999

Z Molnár, and P Cordery
University Laboratory of Physiology, University of Oxford, Oxford OX1 3PT, United Kingdom. zoltan.molnar@ibcm.unil.ch

The aim of our study is to understand the development of the earliest connections in the mammalian pallium by documenting the distribution of cells and fibres labelled from the dorsal and ventral thalamus, internal capsule, perirhinal, and dorsal cortex during the period between embryonic day (E) 14 and 17 by using carbocyanine dye tracing in fixed embryonic rat brains. Dye placed in the thalamus of E14 brains backlabels cells in the thalamic reticular nucleus and within the primitive internal capsule. Both anterograde and retrograde tracing confirmed that the first corticofugal projections reach the internal capsule by E14. At E15-E16, after the first cortical plate cells have migrated into the lateral cortex, some cells of the cortical plate and subplate and marginal zone, are backlabelled from the internal capsule, but still not from the dorsal thalamus, even with very long incubation periods. Crystal placement into the perirhinal cortex at E14-E15 labels numerous cells within the internal capsule, whereas no such cells are revealed from dorsal cerebral cortex until E17, suggesting that internal capsule cells establish early connections with the perirhinal and ventral but not dorsal cortex. We propose that the growth of axons from cortex to dorsal thalamus is delayed in two regions: first from E14-E15 at the lateral entrance of the internal capsule and then, from E16, closer to the thalamus, probably within the thalamic reticular nucleus. Subplate projections reach the proximity of the diencephalon at an early stage, but they might never enter the dorsal thalamus.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003460 Crystallization The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Crystalline Polymorphs,Polymorphism, Crystallization,Crystal Growth,Polymorphic Crystals,Crystal, Polymorphic,Crystalline Polymorph,Crystallization Polymorphism,Crystallization Polymorphisms,Crystals, Polymorphic,Growth, Crystal,Polymorph, Crystalline,Polymorphic Crystal,Polymorphisms, Crystallization,Polymorphs, Crystalline
D004027 Diencephalon The paired caudal parts of the PROSENCEPHALON from which the THALAMUS; HYPOTHALAMUS; EPITHALAMUS; and SUBTHALAMUS are derived. Interbrain,Interbrains
D004622 Embryo, Mammalian The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS. Embryonic Structures, Mammalian,Mammalian Embryo,Mammalian Embryo Structures,Mammalian Embryonic Structures,Embryo Structure, Mammalian,Embryo Structures, Mammalian,Embryonic Structure, Mammalian,Embryos, Mammalian,Mammalian Embryo Structure,Mammalian Embryonic Structure,Mammalian Embryos,Structure, Mammalian Embryo,Structure, Mammalian Embryonic,Structures, Mammalian Embryo,Structures, Mammalian Embryonic
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

Z Molnár, and P Cordery
August 1952, Nederlands tijdschrift voor geneeskunde,
Z Molnár, and P Cordery
February 1992, Current opinion in neurobiology,
Z Molnár, and P Cordery
February 1986, The Journal of comparative neurology,
Z Molnár, and P Cordery
June 1947, The Journal of comparative neurology,
Z Molnár, and P Cordery
May 2000, The Journal of comparative neurology,
Z Molnár, and P Cordery
April 1998, Kaibogaku zasshi. Journal of anatomy,
Z Molnár, and P Cordery
January 1969, Arkhiv anatomii, gistologii i embriologii,
Copied contents to your clipboard!