The effects of vinblastine in assessment of the influence of age on proliferative activity of murine palate and footpad epithelium. 1994

J H Berg, and M W Hill
Dows Institute for Dental Research, The University of Iowa, Iowa City, USA.

Data concerning changes in the rate of cell proliferation of stratified epithelia with increasing age are conflicting. In the present study young (3-month-old) and old (22-month-old) C57Bl/6NNia male mice were injected intraperitoneally with 2, 3, 4 or 8 mg vinblastine sulfate/kg body weight and killed after 1.5, 3, 4.5 or 6 h. The number of arrested metaphase figures per 1000 basal cells was counted in histological sections. Data were analysed using a multivariate analysis of variance. There was a significant difference between the accumulation of mitotic figures in footpad epidermis and palate epithelium and both tissues contained an increased number of mitotic figures with increasing periods of accumulation at all dose levels. In the footpad epidermis neither the age of the animal nor the dose of vinblastine had a significant effect on the number of mitotic figures. In contrast, for palate epithelium the accumulation of mitotic figures was significantly less in the old mice compared with the young mice and at a dose of vinblastine of 2 mg/kg compared with the higher doses. There was a statistically significant interaction between the dose of vinblastine and its period of action. It was concluded that the different tissues manifest a differential sensitivity to vinblastine and that only palate epithelium showed a significant reduction in proliferative activity with age.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D010159 Palate The structure that forms the roof of the mouth. It consists of the anterior hard palate (PALATE, HARD) and the posterior soft palate (PALATE, SOFT). Incisive Papilla,Incisive Papillas,Palates,Papilla, Incisive,Papillas, Incisive
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004817 Epidermis The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D006614 Hindlimb Either of two extremities of four-footed non-primate land animals. It usually consists of a FEMUR; TIBIA; and FIBULA; tarsals; METATARSALS; and TOES. (From Storer et al., General Zoology, 6th ed, p73) Hindlimbs
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

J H Berg, and M W Hill
August 1985, Journal of embryology and experimental morphology,
J H Berg, and M W Hill
December 1976, European journal of cancer,
J H Berg, and M W Hill
November 1994, The Journal of pathology,
Copied contents to your clipboard!