Evidence for cholinergic regulation of basal norepinephrine release in the rat olfactory bulb. 1999

M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, OH 45267, USA.

The effects of locally infused cholinergic agonists on extracellular levels of norepinephrine in the olfactory bulb of anesthetized rats were determined using in vivo microdialysis coupled with high-performance liquid chromatography and electrochemical detection. Using chronically implanted microdialysis probes, the basal norepinephrine level in the olfactory bulb was 0.55 pg/10 microl dialysate. Local infusion of K+ (30 mM) or the norepinephrine re-uptake inhibitor desipramine (1 microM) through the dialysis probe significantly increased basal norepinephrine levels. Focal activation of noradrenergic locus coeruleus neurons, the sole source of norepinephrine innervation of the olfactory bulb, increased norepinephrine levels by 247% of control. Local infusion of the acetylcholinesterase inhibitor soman (0.4 mM) into the olfactory bulb increased basal norepinephrine levels by 134% of control, suggesting that endogenously released acetylcholine modulates norepinephrine release. Intrabulbar infusion of acetylcholine (40 mM) or nicotine (40 mM) increased norepinephrine levels (317% and 178% of control, respectively), while infusion of the muscarinic receptor agonist pilocarpine (40 mM) reduced norepinephrine levels (54% of control). These results demonstrate that basal norepinephrine release in the olfactory bulb is potently modulated by stimulation of local cholinergic receptors. Nicotinic receptors stimulate, and muscarinic receptors inhibit, norepinephrine release from locus coeruleus terminals.

UI MeSH Term Description Entries
D008297 Male Males
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D009830 Olfactory Bulb Ovoid body resting on the CRIBRIFORM PLATE of the ethmoid bone where the OLFACTORY NERVE terminates. The olfactory bulb contains several types of nerve cells including the mitral cells, on whose DENDRITES the olfactory nerve synapses, forming the olfactory glomeruli. The accessory olfactory bulb, which receives the projection from the VOMERONASAL ORGAN via the vomeronasal nerve, is also included here. Accessory Olfactory Bulb,Olfactory Tract,Bulbus Olfactorius,Lateral Olfactory Tract,Main Olfactory Bulb,Olfactory Glomerulus,Accessory Olfactory Bulbs,Bulb, Accessory Olfactory,Bulb, Main Olfactory,Bulb, Olfactory,Bulbs, Accessory Olfactory,Bulbs, Main Olfactory,Bulbs, Olfactory,Glomerulus, Olfactory,Lateral Olfactory Tracts,Main Olfactory Bulbs,Olfactorius, Bulbus,Olfactory Bulb, Accessory,Olfactory Bulb, Main,Olfactory Bulbs,Olfactory Bulbs, Accessory,Olfactory Bulbs, Main,Olfactory Tract, Lateral,Olfactory Tracts,Olfactory Tracts, Lateral,Tract, Lateral Olfactory,Tract, Olfactory,Tracts, Lateral Olfactory,Tracts, Olfactory
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D002853 Chromatography, Liquid Chromatographic techniques in which the mobile phase is a liquid. Liquid Chromatography
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D005110 Extracellular Space Interstitial space between cells, occupied by INTERSTITIAL FLUID as well as amorphous and fibrous substances. For organisms with a CELL WALL, the extracellular space includes everything outside of the CELL MEMBRANE including the PERIPLASM and the cell wall. Intercellular Space,Extracellular Spaces,Intercellular Spaces,Space, Extracellular,Space, Intercellular,Spaces, Extracellular,Spaces, Intercellular
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D017551 Microdialysis A technique for measuring extracellular concentrations of substances in tissues, usually in vivo, by means of a small probe equipped with a semipermeable membrane. Substances may also be introduced into the extracellular space through the membrane.

Related Publications

M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
December 1987, Neuroscience letters,
M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
January 1986, Brain research,
M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
February 2017, The Journal of comparative neurology,
M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
January 1980, Neuroscience,
M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
December 1992, Brain research. Developmental brain research,
M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
May 1984, Experimental neurology,
M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
October 2007, The Journal of comparative neurology,
M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
March 2023, The journal of physiological sciences : JPS,
M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
October 1990, The European journal of neuroscience,
M M El-Etri, and M Ennis, and E R Griff, and M T Shipley
March 2006, Journal of neurophysiology,
Copied contents to your clipboard!