Regional distribution and localization of zinc and metallothionein in the intestine of rats fed diets differing in zinc content. 1999

C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
Dept. of Physiology, The University of Adelaide, Institute of Medical and Veterinary Science, SA, Australia.

BACKGROUND Zinc (Zn) is protective and enhances epithelial repair in gut diseases. In this study we investigate the localization and distribution of Zn and its binding protein, metallothionein (MT), in the gut of rats fed diets varying in Zn content. METHODS Male-Sprague Dawley rats were fed low, normal, high, or excess Zn in their diets (10, 100, 400, or 1000 mg Zn/kg, respectively) and killed 7 days later. Blood, liver, and gut tissues were collected. Tissue Zn was determined with atomic absorption spectrophotometery and MT with a Cd/haem affinity assay. Zn and MT were immunohistochemically localized in the small-intestinal wall with zinquin and an anti-MT antibody. RESULTS Most Zn in the intestinal wall was present in the mucosal scrapings, with 94% membrane-bound and 6% cytosolic, irrespective of dietary Zn. MT levels increased in all gut regions at dietary Zn levels above 100 mg Zn/kg. MT was 40% higher in the ileum than in other gut regions in rats fed low- and normal-Zn diets. The Zn content of the ileum was also 20% higher than that of other gut regions in rats fed low-, normal-, or high-Zn diets. Zn and MT were colocalized in the base of the intestinal crypts, most visibly in the ileum. CONCLUSIONS Mucosal cytosolic Zn and MT concentrations are increased only at high or excessive Zn intakes in all gut regions except the ileum, which can respond to a lower Zn intake. As the cytosolic Zn pool most likely influences mucosal protection and repair mechanisms, it is proposed that an increased MT may indicate the adequacy of oral Zn therapy in gut disease.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008668 Metallothionein A low-molecular-weight (approx. 10 kD) protein occurring in the cytoplasm of kidney cortex and liver. It is rich in cysteinyl residues and contains no aromatic amino acids. Metallothionein shows high affinity for bivalent heavy metals. Isometallothionein,Metallothionein A,Metallothionein B,Metallothionein I,Metallothionein II,Metallothionein IIA
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D000009 Abdominal Muscles Muscles forming the ABDOMINAL WALL including RECTUS ABDOMINIS; ABDOMINAL OBLIQUE MUSCLES, transversus abdominis, pyramidalis muscles and quadratus abdominis. Cremaster Muscle,Pyramidalis Muscle,Quadratus Abdominis,Transverse Abdominal,Transversus Abdominis,Abdominal Muscle,Abdominal, Transverse,Abdominals, Transverse,Abdomini, Quadratus,Abdominis, Quadratus,Cremaster Muscles,Muscle, Abdominal,Muscle, Cremaster,Muscle, Pyramidalis,Muscles, Abdominal,Muscles, Cremaster,Muscles, Pyramidalis,Pyramidalis Muscles,Quadratus Abdomini,Transverse Abdominals
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses

Related Publications

C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
August 1977, Environmental research,
C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
January 1982, Clinical orthopaedics and related research,
C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
August 1984, Journal of lipid research,
C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
January 1978, Bioinorganic chemistry,
C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
August 1999, Biological trace element research,
C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
October 1969, The Journal of nutrition,
C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
January 1984, Annals of nutrition & metabolism,
C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
August 1970, The Journal of nutrition,
C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
August 1982, The Journal of nutrition,
C D Tran, and R N Butler, and G S Howarth, and J C Philcox, and A M Rofe, and P Coyle
May 1999, The Journal of nutrition,
Copied contents to your clipboard!