Enhancement of tumor ablation by a selected HSV-1 thymidine kinase mutant. 1999

M S Kokoris, and P Sabo, and E T Adman, and M E Black
Chiroscience R & D, Inc., Bothell, WA 99164-6510, USA.

With the advent of gene therapy, herpes simplex virus type I (HSV-1) thymidine kinase (TK) has garnered much interest as a suicide gene for cancer ablation. As a means to improve the overall efficacy of the prodrug-gene activation approach, as well as to reduce ganciclovir-mediated toxicity, a large library of mutant thymidine kinases was generated and screened for the ability to enhance in vitro cell sensitivity to the prodrugs, ganciclovir (GCV) and acyclovir (ACV). Enzyme kinetics of one thymidine kinase mutant from this library that contains six amino acid substitutions at or near the active site reveals a distinct mechanism for providing enhanced prodrug-mediated killing in mammalian cells. In in vitro rat C6 cell prodrug sensitivity assays the TK mutant (mutant 30) achieves nanomolar IC50 values with GCV and ACV, in contrast to IC50values of 30 microM and >100 microM, respectively, for wild-type TK. In a mouse xenograft tumor model, growth of mutant 30 expressing tumors is restricted by ganciclovir at a dose at least 10- fold lower than one that impedes growth of wild-type TK-expressing tumors. Furthermore, in the presence of GCV a substantial bystander effect is observable when only 20% of the tumor cells express mutant 30 whereas no restriction in tumor growth is seen in tumors bearing the wild-type TK under the same conditions. The enhanced sensitization to prodrugs conferred by mutant 30 is apparently due to a 35-fold increase in thymidine Km which results in reduced competition between prodrug and thymidine at the active site. This provides mutant 30 a substantial kinetic advantage despite very high Kms for both ganciclovir and acyclovir. Molecular modeling of the mutations within the active site suggests that a tyrosine substitution at alanine 168 (A168) alters thymidine and prodrug interactions by causing catalytically important residues to move. The use of mutant 30 in place of the wild-type TK should provide a more effective gene therapy of cancer.

UI MeSH Term Description Entries
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D011355 Prodrugs A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug. Drug Precursor,Drug Precursors,Pro-Drug,Prodrug,Pro-Drugs,Precursor, Drug,Precursors, Drug,Pro Drug,Pro Drugs
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D005910 Glioma Benign and malignant central nervous system neoplasms derived from glial cells (i.e., astrocytes, oligodendrocytes, and ependymocytes). Astrocytes may give rise to astrocytomas (ASTROCYTOMA) or glioblastoma multiforme (see GLIOBLASTOMA). Oligodendrocytes give rise to oligodendrogliomas (OLIGODENDROGLIOMA) and ependymocytes may undergo transformation to become EPENDYMOMA; CHOROID PLEXUS NEOPLASMS; or colloid cysts of the third ventricle. (From Escourolle et al., Manual of Basic Neuropathology, 2nd ed, p21) Glial Cell Tumors,Malignant Glioma,Mixed Glioma,Glial Cell Tumor,Glioma, Malignant,Glioma, Mixed,Gliomas,Gliomas, Malignant,Gliomas, Mixed,Malignant Gliomas,Mixed Gliomas,Tumor, Glial Cell,Tumors, Glial Cell
D000212 Acyclovir A GUANOSINE analog that acts as an antimetabolite. Viruses are especially susceptible. Used especially against herpes. Acycloguanosine,9-((2-Hydroxyethoxy)methyl)guanine,Aci-Sanorania,Acic,Aciclobeta,Aciclostad,Aciclovir,Aciclovir Alonga,Aciclovir-Sanorania,Acifur,Acipen Solutab,Acivir,Activir,Acyclo-V,Acyclovir Sodium,Antiherpes Creme,Avirax,Cicloferon,Clonorax,Cusiviral,Genvir,Herpetad,Herpofug,Herpotern,Herpoviric,Isavir,Laciken,Mapox,Maynar,Milavir,Opthavir,Supraviran,Viclovir,Vipral,Virax-Puren,Virherpes,Virmen,Virolex,Virupos,Virzin,Wellcome-248U,Zoliparin,Zovirax,Zyclir,aciclovir von ct,Aci Sanorania,Aciclovir Sanorania,Acyclo V,Alonga, Aciclovir,Sodium, Acyclovir,Solutab, Acipen,Virax Puren,ViraxPuren,Wellcome 248U,Wellcome248U
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein

Related Publications

M S Kokoris, and P Sabo, and E T Adman, and M E Black
June 1999, Annals of the New York Academy of Sciences,
M S Kokoris, and P Sabo, and E T Adman, and M E Black
February 1989, Nihon rinsho. Japanese journal of clinical medicine,
M S Kokoris, and P Sabo, and E T Adman, and M E Black
July 2012, Organic letters,
M S Kokoris, and P Sabo, and E T Adman, and M E Black
January 1998, Advances in experimental medicine and biology,
M S Kokoris, and P Sabo, and E T Adman, and M E Black
April 1987, Current eye research,
M S Kokoris, and P Sabo, and E T Adman, and M E Black
April 2003, International journal of cancer,
M S Kokoris, and P Sabo, and E T Adman, and M E Black
April 2015, Molecular therapy : the journal of the American Society of Gene Therapy,
M S Kokoris, and P Sabo, and E T Adman, and M E Black
January 1987, Current eye research,
M S Kokoris, and P Sabo, and E T Adman, and M E Black
September 2006, Gene therapy,
Copied contents to your clipboard!