Mechanisms for activation of aortic baroreceptor C-fibres in rabbits and rats. 1999

P Thoren, and P A Munch, and A M Brown
Karolinska Institutet, Stockholm, Sweden.

In an earlier study, we examined the pressure-response characteristics of rat aortic baroreceptors with C-fibre (non-medullated) afferents. Compared with aortic baroreceptor fibres with A-fibre (medullated) afferents, the C-fibres were activated at higher pressures and discharged more irregularly when stimulated with a steady level of pressure. Here we examine the relationship between discharge and the aortic diameter in these two types of afferents in rats and rabbits. An in vitro aortic arch/aortic nerve preparation was used to record single-fibre activity simultaneously with aortic arch pressure and diameter. Diameter was measured using a highly sensitive non-contact photoelectric device. Baroreceptor discharge was characterized by stimulating the nerve endings with either slow pressure ramps from subthreshold to 200-250 mmHg, at a rate of rise of 2 mmHg s-1, or pressure steps from subthreshold to suprathreshold levels, at amplitudes of 110-180 mmHg. In response to these inputs, C-fibres in rabbits (conduction velocities= 0.8-2.2 m s-1) behaved much like those in rats. The C-fibres had significantly higher pressure thresholds (95 +/- 3 mmHg vs. 53 +/- 2 mmHg; mean +/- SEM), lower threshold frequencies (2.4 +/- 0.5 vs. 27.7 +/- 1.8 spikes s-1), lower maximum discharge frequencies (22.7 +/- 2.3 vs. 65 +/- 5.8 spikes s-1) and more irregular discharge in response to a pressure step when compared with A-fibres (conduction velocities of 8-16 m s-1). When plotted against diameter, C-fibre ramp-evoked discharge increased gradually at first, and then rose steeply at increasingly higher ramp pressures where aortic diameter became relatively constant. In contrast, A-fibre discharge was linearly related to diameter over a wide range of pressure. These results suggest two interpretations: (1) The relation between stretch and C-fibre discharge is highly non-linear, with a marked increase in sensitivity at large diameters. (2) C-fibres are stimulated by changes in intramural stress rather than stretch.

UI MeSH Term Description Entries
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D011311 Pressoreceptors Receptors in the vascular system, particularly the aorta and carotid sinus, which are sensitive to stretch of the vessel walls. Baroreceptors,Receptors, Stretch, Arterial,Receptors, Stretch, Vascular,Stretch Receptors, Arterial,Stretch Receptors, Vascular,Arterial Stretch Receptor,Arterial Stretch Receptors,Baroreceptor,Pressoreceptor,Receptor, Arterial Stretch,Receptor, Vascular Stretch,Receptors, Arterial Stretch,Receptors, Vascular Stretch,Stretch Receptor, Arterial,Stretch Receptor, Vascular,Vascular Stretch Receptor,Vascular Stretch Receptors
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011921 Rats, Inbred WKY A strain of Rattus norvegicus used as a normotensive control for the spontaneous hypertensive rats (SHR). Rats, Wistar Kyoto,Wistar Kyoto Rat,Rats, WKY,Inbred WKY Rat,Inbred WKY Rats,Kyoto Rat, Wistar,Rat, Inbred WKY,Rat, WKY,Rat, Wistar Kyoto,WKY Rat,WKY Rat, Inbred,WKY Rats,WKY Rats, Inbred,Wistar Kyoto Rats
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

P Thoren, and P A Munch, and A M Brown
September 1972, Clinical science,
P Thoren, and P A Munch, and A M Brown
April 1977, Acta physiologica Scandinavica,
P Thoren, and P A Munch, and A M Brown
January 1978, Acta physiologica Scandinavica,
P Thoren, and P A Munch, and A M Brown
September 1992, Journal of the autonomic nervous system,
P Thoren, and P A Munch, and A M Brown
January 1995, Clinical and experimental hypertension (New York, N.Y. : 1993),
P Thoren, and P A Munch, and A M Brown
March 1968, Acta physiologica Scandinavica,
P Thoren, and P A Munch, and A M Brown
November 1971, Acta physiologica Scandinavica,
P Thoren, and P A Munch, and A M Brown
January 1972, Clinical science,
P Thoren, and P A Munch, and A M Brown
November 1964, The Journal of physiology,
Copied contents to your clipboard!