Sleep deprivation effects on the activity of the hypothalamic-pituitary-adrenal and growth axes: potential clinical implications. 1999

A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
Sleep Research and Treatment Center, Department of Psychiatry, Pennsylvania State University, Hershey, PA 17033, USA.

OBJECTIVE Although several studies have shown that sleep deprivation is associated with increased slow wave sleep during the recovery night, the effects of sleep deprivation on cortisol and growth hormone (GH) secretion the next day and recovery night have not been assessed systematically. We hypothesized that increased slow wave sleep postsleep deprivation is associated with decreased cortisol levels and that the enhanced GH secretion is driven by the decreased activity of the HPA axis. METHODS After four consecutive nights in the Sleep Laboratory, 10 healthy young men were totally deprived of sleep during the fifth night, and then allowed to sleep again on nights six and seven. Twenty-four hour blood sampling was performed serially every 30 minutes on the fourth day, immediately following the previous night of sleep and on the sixth day, immediately after sleep deprivation. METHODS Eight-hour sleep laboratory recording, including electroencephologram, electro-oculogram and electromyogram. Plasma cortisol and GH levels using specific immunoassay techniques. RESULTS Mean plasma and time-integrated (AUC) cortisol levels were lower during the postdeprivation nighttime period than on the fourth night (P < 0.05). Pulsatile analysis showed significant reduction of both the 24 h and daytime peak area (P < 0.05) and of the pulse amplitude (P < 0.01), but not of the pulse frequency. Also, the amount of time-integrated GH was significantly higher for the first 4 h of the postdeprivation night compared to the predeprivation night (P < 0.05). Cross-correlation analyses between the absolute values of the time-series of each hormone value and percentage of each sleep stage per half hour revealed that slow wave sleep was negatively correlated with cortisol and positively correlated with GH with slow wave sleep preceding the secretion of these hormones. In contrast, indices of sleep disturbance, i.e. wake and stage 1 sleep, were positively correlated with cortisol and negatively correlated with GH. CONCLUSIONS We conclude that sleep deprivation results in a significant reduction of cortisol secretion the next day and this reduction appears to be, to a large extent, driven by the increase of slow wave sleep during the recovery night. We propose that reduction of CRH and cortisol secretion may be the mechanism through which sleep deprivation relieves depression temporarily. Furthermore, deep sleep has an inhibitory effect on the HPA axis while it enhances the activity of the GH axis. In contrast, sleep disturbance has a stimulatory effect on the HPA axis and a suppressive effect on the GH axis. These results are consistent with the observed hypocortisolism in idiopathic hypersomnia and HPA axis relative activation in chronic insomnia. Finally, our findings support previous hypotheses about the restitution and immunoenhancement role of slow wave (deep) sleep.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D008297 Male Males
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006854 Hydrocortisone The main glucocorticoid secreted by the ADRENAL CORTEX. Its synthetic counterpart is used, either as an injection or topically, in the treatment of inflammation, allergy, collagen diseases, asthma, adrenocortical deficiency, shock, and some neoplastic conditions. Cortef,Cortisol,Pregn-4-ene-3,20-dione, 11,17,21-trihydroxy-, (11beta)-,11-Epicortisol,Cortifair,Cortril,Epicortisol,Hydrocortisone, (11 alpha)-Isomer,Hydrocortisone, (9 beta,10 alpha,11 alpha)-Isomer,11 Epicortisol
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D012892 Sleep Deprivation The state of being deprived of sleep under experimental conditions, due to life events, or from a wide variety of pathophysiologic causes such as medication effect, chronic illness, psychiatric illness, or sleep disorder. Inadequate Sleep,Insufficient Sleep,Insufficient Sleep Syndrome,REM Sleep Deprivation,Sleep Debt,Sleep Fragmentation,Sleep Insufficiency,Deprivation, REM Sleep,Deprivation, Sleep,Fragmentation, Sleep,Insufficiencies, Sleep,Insufficiency, Sleep,Insufficient Sleep Syndromes,Sleep Deprivation, REM,Sleep Insufficiencies,Sleep, Inadequate,Sleep, Insufficient,Syndrome, Insufficient Sleep
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin

Related Publications

A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
January 2006, Pediatric endocrinology reviews : PER,
A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
January 2001, Journal of psychiatric research,
A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
April 2006, Journal of neuroendocrinology,
A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
October 2016, Journal of endocrinological investigation,
A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
February 1989, The Journal of clinical endocrinology and metabolism,
A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
January 2000, Annals of the New York Academy of Sciences,
A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
September 2017, Stress (Amsterdam, Netherlands),
A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
December 2020, The Science of the total environment,
A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
September 1999, European journal of endocrinology,
A N Vgontzas, and G Mastorakos, and E O Bixler, and A Kales, and P W Gold, and G P Chrousos
June 2002, Journal of neuroendocrinology,
Copied contents to your clipboard!