Effects of amphetamine and cocaine treatment on c-Fos, Jun-B, and Krox-24 expression in rats with intrastriatal dopaminergic grafts. 1999

J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
INSERM U.259, Domaine de Carreire, Rue Camille Saint Saƫns, Bordeaux Cedex, 33077, France.

Activation of dopaminergic (DA) transmission by psychostimulants increases c-fos expression. d-Amphetamine-induced c-fos activation is reduced in the neostriatum deprived of DA afferents. Dopaminergic grafts implanted into the denervated neostriatum induce a c-fos hyperexpression when challenged with d-amphetamine, which is correlated with the exaggerated compensation of d-amphetamine-induced rotation. The aim of the present study was to test the generality of this phenomenon and the effects of DA grafts on the expression of three immediate early gene-coded proteins (c-Fos, Jun-B, Krox-24) following a challenge with either d-amphetamine or cocaine. c-fos basal expression was low in the neostriatum and was increased by the administration of psychostimulants. These effects were blocked by the DA lesion and restored by the DA grafts. A c-fos hyperexpression was observed within the grafted neostriatum, which was correlated with the compensation of d-amphetamine- or cocaine-induced rotation. Basal levels of Jun-B- and Krox-24-LI nuclei were high within the neostriatum. Administration of d-amphetamine or cocaine did not influence the expression of these IEG-coded proteins. Jun-B expression was not affected by the surgical procedure. In contrast, lesion of DA afferents of neostriatum decreased Krox-24 basal expression, an effect reversed by the grafts. Thus, the expression of c-fos but not Jun-B or Krox-24 appeared to be a good marker for the rotational behavior exhibited by DA-grafted rats challenged with drugs that increased DA transmission. This generalized c-fos overshoot indicates an abnormal activation of postsynaptic neurons by dopamine and points to its value as an indicator of the deleterious effects of DA grafts.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D003042 Cocaine An alkaloid ester extracted from the leaves of plants including coca. It is a local anesthetic and vasoconstrictor and is clinically used for that purpose, particularly in the eye, ear, nose, and throat. It also has powerful central nervous system effects similar to the amphetamines and is a drug of abuse. Cocaine, like amphetamines, acts by multiple mechanisms on brain catecholaminergic neurons; the mechanism of its reinforcing effects is thought to involve inhibition of dopamine uptake. Cocaine HCl,Cocaine Hydrochloride,HCl, Cocaine,Hydrochloride, Cocaine
D003913 Dextroamphetamine The d-form of AMPHETAMINE. It is a central nervous system stimulant and a sympathomimetic. It has also been used in the treatment of narcolepsy and of attention deficit disorders and hyperactivity in children. Dextroamphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulating release of monamines, and inhibiting monoamine oxidase. It is also a drug of abuse and a psychotomimetic. d-Amphetamine,Curban,Dexamfetamine,Dexamphetamine,Dexedrine,Dextro-Amphetamine Sulfate,DextroStat,Dextroamphetamine Sulfate,Oxydess,d-Amphetamine Sulfate,dextro-Amphetamine,Dextro Amphetamine Sulfate,Sulfate, Dextroamphetamine,d Amphetamine,d Amphetamine Sulfate,dextro Amphetamine
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D006085 Graft Survival The survival of a graft in a host, the factors responsible for the survival and the changes occurring within the graft during growth in the host. Graft Survivals,Survival, Graft,Survivals, Graft
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors

Related Publications

J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
December 1996, The European journal of neuroscience,
J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
December 1995, Experimental neurology,
J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
May 1992, Brain research. Molecular brain research,
J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
June 1992, Brain research,
J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
January 1995, Endocrine research,
J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
October 1994, Cellular and molecular neurobiology,
J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
March 1995, The Journal of comparative neurology,
J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
December 2014, Drug and alcohol dependence,
J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
October 1997, Experimental neurology,
J J Rodriguez, and M F Montaron, and C Aurousseau, and M Le Moal, and D N Abrous
February 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!