In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. 1999

K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
The Institute for Complex Engineered Systems, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA. kmarra@cs.cmu.edu

Blends of biodegradable polymers, poly(caprolactone) and poly(D, L-lactic-co-glycolic acid), have been examined as scaffolds for applications in bone tissue engineering. Hydroxyapatite granules have been incorporated into the blends and porous discs were prepared. Mechanical properties and degradation rates in vitro of the composites were determined. The discs were seeded with rabbit bone marrow or cultured bone marrow stromal cells and incubated under physiological conditions. Polymer/ceramic scaffolds supported cell growth throughout the scaffold for 8 weeks. Scanning and transmission electron microscopy, and histological analyses were used to characterize the seeded composites. This study suggests the feasibility of using novel polymer/ceramic composites as scaffold in bone tissue engineering applications.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D011091 Polyesters Polymers of organic acids and alcohols, with ester linkages--usually polyethylene terephthalate; can be cured into hard plastic, films or tapes, or fibers which can be woven into fabrics, meshes or velours. Polyester
D011100 Polyglycolic Acid A biocompatible polymer used as a surgical suture material. Polyglycolide,Biofix,Dexon (Polyester),Dexon-S,Dexon S,DexonS
D011108 Polymers Compounds formed by the joining of smaller, usually repeating, units linked by covalent bonds. These compounds often form large macromolecules (e.g., BIOPOLYMERS; PLASTICS). Polymer
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000077182 Polylactic Acid-Polyglycolic Acid Copolymer A co-polymer that consists of varying ratios of polylactic acid and polyglycolic acid. It is used as a matrix for drug delivery and for BONE REGENERATION. PLGA Acid,LactoSorb,PL-PG Copolymer,PLG Polymer,PLGA Compound,Poly (D,L-lactic-co-glycolic Acid),Poly (Lactic-co-glycolic Acid) -,Poly(D,L-lactide-co-glycolide),Poly(DL-lactide-co-glycolic Acid),Poly(Glycolide-co-lactide),Poly(L-lactide)-co-glycolide,Poly(Lactic-co-glycolic Acid),Poly-L-lactic-polyglycolic Acid,Polylactic-co-glycolic Acid Copolymer,RG 502,Acid, PLGA,Acids, PLGA,Copolymer, PL-PG,Copolymer, Polylactic-co-glycolic Acid,Copolymers, PL-PG,Copolymers, Polylactic-co-glycolic Acid,PL PG Copolymer,PL-PG Copolymers,PLG Polymers,PLGA Acids,PLGA Compounds,Poly L lactic polyglycolic Acid,Poly-L-lactic-polyglycolic Acids,Polylactic Acid Polyglycolic Acid Copolymer,Polylactic co glycolic Acid Copolymer,Polylactic-co-glycolic Acid Copolymers,Polymer, PLG,Polymers, PLG
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
September 2021, Polymers,
K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
May 1986, Biomaterials,
K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
January 2014, ASAIO journal (American Society for Artificial Internal Organs : 1992),
K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
January 2024, ACS applied materials & interfaces,
K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
January 2018, Biotechnology advances,
K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
February 2015, Journal of biomedical materials research. Part A,
K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
October 2023, Biomaterials advances,
K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
May 2000, Zhongguo xiu fu chong jian wai ke za zhi = Zhongguo xiufu chongjian waike zazhi = Chinese journal of reparative and reconstructive surgery,
K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
November 2022, Materials (Basel, Switzerland),
K G Marra, and J W Szem, and P N Kumta, and P A DiMilla, and L E Weiss
August 2021, Polymers,
Copied contents to your clipboard!