Bicarbonate enhances the peroxidase activity of Cu,Zn-superoxide dismutase. Role of carbonate anion radical. 1999

S P Goss, and R J Singh, and B Kalyanaraman
Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.

We examined the effect of bicarbonate on the peroxidase activity of copper-zinc superoxide dismutase (SOD1), using the nitrite anion as a peroxidase probe. Oxidation of nitrite by the enzyme-bound oxidant results in the formation of the nitrogen dioxide radical, which was measured by monitoring 5-nitro-gamma-tocopherol formation. Results indicate that the presence of bicarbonate is not required for the peroxidase activity of SOD1, as monitored by the SOD1/H(2)O(2)-mediated nitration of gamma-tocopherol in the presence of nitrite. However, bicarbonate enhanced SOD1/H(2)O(2)-dependent oxidation of tocopherols in the presence and absence of nitrite and dramatically enhanced SOD1/H(2)O(2)-mediated oxidation of unsaturated lipid in the presence of nitrite. These results, coupled with the finding that bicarbonate protects against inactivation of SOD1 by H(2)O(2), suggest that SOD1/H(2)O(2) oxidizes the bicarbonate anion to the carbonate radical anion. Thus, the amplification of peroxidase activity of SOD1/H(2)O(2) by bicarbonate is attributed to the intermediary role of the diffusible oxidant, the carbonate radical anion. We conclude that, contrary to a previous report (Sankarapandi, S., and Zweier, J. L. (1999) J. Biol. Chem. 274, 1226-1232), bicarbonate is not required for peroxidase activity mediated by SOD1 and H(2)O(2). However, bicarbonate enhanced the peroxidase activity of SOD1 via formation of a putative carbonate radical anion. Biological implications of the carbonate radical anion in free radical biology are discussed.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D010544 Peroxidases Ovoperoxidase
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D004578 Electron Spin Resonance Spectroscopy A technique applicable to the wide variety of substances which exhibit paramagnetism because of the magnetic moments of unpaired electrons. The spectra are useful for detection and identification, for determination of electron structure, for study of interactions between molecules, and for measurement of nuclear spins and moments. (From McGraw-Hill Encyclopedia of Science and Technology, 7th edition) Electron nuclear double resonance (ENDOR) spectroscopy is a variant of the technique which can give enhanced resolution. Electron spin resonance analysis can now be used in vivo, including imaging applications such as MAGNETIC RESONANCE IMAGING. ENDOR,Electron Nuclear Double Resonance,Electron Paramagnetic Resonance,Paramagnetic Resonance,Electron Spin Resonance,Paramagnetic Resonance, Electron,Resonance, Electron Paramagnetic,Resonance, Electron Spin,Resonance, Paramagnetic
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001639 Bicarbonates Inorganic salts that contain the -HCO3 radical. They are an important factor in determining the pH of the blood and the concentration of bicarbonate ions is regulated by the kidney. Levels in the blood are an index of the alkali reserve or buffering capacity. Bicarbonate,Bicarbonate Ions,Hydrogen Carbonates,Bicarbonate Ion,Carbonic Acid Ions,Hydrogen Carbonate,Carbonate, Hydrogen,Carbonates, Hydrogen,Ion, Bicarbonate,Ions, Bicarbonate,Ions, Carbonic Acid
D013482 Superoxide Dismutase An oxidoreductase that catalyzes the reaction between SUPEROXIDES and hydrogen to yield molecular oxygen and hydrogen peroxide. The enzyme protects the cell against dangerous levels of superoxide. Hemocuprein,Ag-Zn Superoxide Dismutase,Cobalt Superoxide Dismutase,Cu-Superoxide Dismutase,Erythrocuprein,Fe-Superoxide Dismutase,Fe-Zn Superoxide Dismutase,Iron Superoxide Dismutase,Manganese Superoxide Dismutase,Mn-SOD,Mn-Superoxide Dismutase,Ag Zn Superoxide Dismutase,Cu Superoxide Dismutase,Dismutase, Ag-Zn Superoxide,Dismutase, Cobalt Superoxide,Dismutase, Cu-Superoxide,Dismutase, Fe-Superoxide,Dismutase, Fe-Zn Superoxide,Dismutase, Iron Superoxide,Dismutase, Manganese Superoxide,Dismutase, Mn-Superoxide,Dismutase, Superoxide,Fe Superoxide Dismutase,Fe Zn Superoxide Dismutase,Mn SOD,Mn Superoxide Dismutase,Superoxide Dismutase, Ag-Zn,Superoxide Dismutase, Cobalt,Superoxide Dismutase, Fe-Zn,Superoxide Dismutase, Iron,Superoxide Dismutase, Manganese

Related Publications

S P Goss, and R J Singh, and B Kalyanaraman
June 2010, Free radical biology & medicine,
S P Goss, and R J Singh, and B Kalyanaraman
January 1999, The Journal of biological chemistry,
S P Goss, and R J Singh, and B Kalyanaraman
December 1999, Free radical biology & medicine,
S P Goss, and R J Singh, and B Kalyanaraman
May 1995, Biochemistry and molecular biology international,
Copied contents to your clipboard!