Molecular distinction of phosphatidylcholine synthesis between the CDP-choline pathway and phosphatidylethanolamine methylation pathway. 1999

C J DeLong, and Y J Shen, and M J Thomas, and Z Cui
Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.

In addition to the CDP-choline pathway for phosphatidylcholine (PC) synthesis, the liver has a unique phosphatidylethanolamine (PE) methyltransferase activity for PC synthesis via three methylations of the ethanolamine moiety of PE. Previous studies indicate that the two pathways are functionally different and not interchangeable even though PC is the common product of both pathways. This study was designed to test the hypothesis that these two pathways produce different profiles of PC species. The PC species from these two pathways were labeled with specific stable isotope precursors, D9-choline and D4-ethanolamine, and analyzed by electrospray tandem mass spectrometry. Our studies revealed a profound distinction in PC profiles between the CDP-choline pathway and the PE methylation pathway. PC molecules produced from the CDP-choline pathway were mainly comprised of medium chain, saturated (e.g. 16:0/18:0) species. On the other hand, PC molecules from the PE methylation pathway were much more diverse and were comprised of significantly more long chain, polyunsaturated (e.g. 18:0/20:4) species. PC species from the methylation pathway contained a higher percentage of arachidonate and were more diverse than those from the CDP-choline pathway. This profound distinction of PC profiles may contribute to the different functions of these two pathways in the liver.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008745 Methylation Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed) Methylations
D008780 Methyltransferases A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1. Methyltransferase
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010714 Phosphatidylethanolamines Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to an ethanolamine moiety. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid and ethanolamine and 2 moles of fatty acids. Cephalin,Cephalins,Ethanolamine Phosphoglyceride,Ethanolamine Phosphoglycerides,Ethanolamineglycerophospholipids,Phosphoglyceride, Ethanolamine,Phosphoglycerides, Ethanolamine
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003566 Cytidine Diphosphate Choline Donor of choline in biosynthesis of choline-containing phosphoglycerides. CDP Choline,Citicoline,Cidifos,Citicholine,Cyticholine,Cytidine 5'-Diphosphocholine,5'-Diphosphocholine, Cytidine,Choline, CDP,Choline, Cytidine Diphosphate,Cytidine 5' Diphosphocholine,Diphosphate Choline, Cytidine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D050918 Phosphatidylethanolamine N-Methyltransferase An enzyme that catalyses three sequential METHYLATION reactions for conversion of phosphatidylethanolamine to PHOSPHATIDYLCHOLINE. Cephalin N-Methyltransferase,PHET Methyltransferase II,Phosphatidylethanolamine Methyltransferase,Phosphatidylethanolamine N-Methyltransferase-2,Phosphatidylethanolamine-Methyltransferase II,Phosphatidylethanolamine-Phosphatidylcholine N-Methyltransferase,Phospholipid Methyltransferase II,S-Adenosylmethionine Phosphatidylethanolamine N-Methyltransferase,Cephalin N Methyltransferase,Methyltransferase II, PHET,Methyltransferase II, Phospholipid,Methyltransferase, Phosphatidylethanolamine,N-Methyltransferase, Cephalin,N-Methyltransferase, Phosphatidylethanolamine,N-Methyltransferase, Phosphatidylethanolamine-Phosphatidylcholine,N-Methyltransferase, S-Adenosylmethionine Phosphatidylethanolamine,N-Methyltransferase-2, Phosphatidylethanolamine,Phosphatidylethanolamine Methyltransferase II,Phosphatidylethanolamine N Methyltransferase,Phosphatidylethanolamine N Methyltransferase 2,Phosphatidylethanolamine N-Methyltransferase, S-Adenosylmethionine,Phosphatidylethanolamine Phosphatidylcholine N Methyltransferase,S Adenosylmethionine Phosphatidylethanolamine N Methyltransferase

Related Publications

C J DeLong, and Y J Shen, and M J Thomas, and Z Cui
January 2004, The international journal of biochemistry & cell biology,
C J DeLong, and Y J Shen, and M J Thomas, and Z Cui
March 2013, Biochimica et biophysica acta,
C J DeLong, and Y J Shen, and M J Thomas, and Z Cui
November 1988, Diabetes,
C J DeLong, and Y J Shen, and M J Thomas, and Z Cui
February 2000, Hepatology (Baltimore, Md.),
C J DeLong, and Y J Shen, and M J Thomas, and Z Cui
January 2004, Molecular microbiology,
C J DeLong, and Y J Shen, and M J Thomas, and Z Cui
February 2001, The Journal of biological chemistry,
C J DeLong, and Y J Shen, and M J Thomas, and Z Cui
June 2010, IUBMB life,
Copied contents to your clipboard!