Hypoxia stimulates proliferation and interleukin-1alpha production in human vascular smooth muscle cells. 1999

A L Cooper, and D Beasley
Division of Nephrology, Department of Medicine, New England Medical Center Hospitals, Boston, Massachusetts 02111, USA.

Several lines of evidence indicate that hypoxia is a stimulus to vascular smooth muscle cell (VSMC) proliferation that occurs in pulmonary hypertension. The present study tested the hypothesis that low O(2) tension directly stimulates human VSMC proliferation by inducing them to produce interleukin (IL)-1, a potent autocrine growth factor for human VSMC. Human VSMC derived from pulmonary artery, aorta, or saphenous vein were incubated in either a normal in vitro O(2) environment (20% O(2)) or in chambers containing low (approximately 1%) or moderate (5%) O(2). Levels of IL-1alpha and IL-1beta mRNA increased in human VSMC after 24-48 h of incubation in low O(2) compared with levels in normoxic cells and then decreased upon subsequent reoxygenation. Levels of cell-associated IL-1alpha also increased progressively after 24-48 h in low O(2); however, detectable IL-1alpha was not released from the cells in the media. IL-1beta was detectable in cell lysates and supernatants; however, the levels were not affected by exposure to low O(2). mRNA encoding for tumor necrosis factor-alpha (TNF-alpha), a related cytokine and VSMC mitogen, was not detectable in human VSMC exposed to either low or 20% O(2). Proliferation of human VSMC was not stimulated during exposure to low O(2), despite the fact that cells remained responsive to the mitogenic effect of exogenous IL-1. Interestingly, however, exposure to 5% O(2) enhanced proliferation of human VSMC but did not induce IL-1alpha production. Inhibition of IL-1 binding to the type I IL-1 receptor by exogenous addition of IL-1-receptor antagonist (10 microgram/ml) did not attenuate the proliferation rates of human VSMC incubated in 20%, 5%, or low O(2) or in human VSMC that were reoxygenated after exposure to low O(2). These results demonstrate two direct and distinct effects of hypoxia on VSMC. Exposure to moderately low O(2) tension induces VSMC proliferation, independent of IL-1, whereas exposure to very low O(2) tension induces production of IL-1alpha.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions
D017472 Receptors, Interleukin-1 Cell surface receptors that are specific for INTERLEUKIN-1. Included under this heading are signaling receptors, non-signaling receptors and accessory proteins required for receptor signaling. Signaling from interleukin-1 receptors occurs via interaction with SIGNAL TRANSDUCING ADAPTOR PROTEINS such as MYELOID DIFFERENTIATION FACTOR 88. IL-1 Receptor,IL-1 Receptors,IL1 Receptor,Interleukin-1 Receptor,Interleukin-1 Receptors,Receptor, Interleukin-1,Receptors, IL-1,IL1 Receptors,Interleukin 1 Receptor,IL 1 Receptor,IL 1 Receptors,Interleukin 1 Receptors,Receptor, IL-1,Receptor, IL1,Receptor, Interleukin 1,Receptors, IL 1,Receptors, IL1,Receptors, Interleukin 1

Related Publications

A L Cooper, and D Beasley
June 2006, American journal of physiology. Heart and circulatory physiology,
A L Cooper, and D Beasley
January 1991, Journal of cardiovascular pharmacology,
A L Cooper, and D Beasley
January 1997, Experimental and molecular pathology,
A L Cooper, and D Beasley
August 2014, Endocrine,
A L Cooper, and D Beasley
April 1998, Journal of molecular and cellular cardiology,
Copied contents to your clipboard!