Interactions of lithium and drugs that affect signal transduction on behaviour in rats. 1999

O Kofman, and Y Patishi
Department of Behavioral Sciences, Faculty of Social Sciences and Humanities, Ben-Gurion University of the Negev, Beer-Sheva, Israel. kofman@bgumail.bgu.ac.il

The therapeutic mechanism of the action of lithium in the treatment of bipolar affective disorder is not known, in spite of a burgeoning number of biochemical studies linking lithium to signal transduction processes. This article reviews a decade of studies examining the behavioural manifestations of manipulating inositol, cyclic adenosine monophosphate (cAMP) and G proteins in rats. Inositol, forskolin, dibutyryl cAMP and pertussis toxin all interacted with lithium when rearing behavior was measured. Lithium potentiated the increase in locomotion induced by injections of cholera toxin into the nucleus accumbens, consistent with the hypothesis that it inactivates inhibitory G proteins. More specific interactions were found between lithium and inositol following cholinergic and serotonergic stimulation. Inositol, but not forskolin, attenuated lithium-pilocarpine seizures and the enhancement of the serotonin syndrome; however, inositol had no effect on lithium-induced attenuation of wet dog shakes following an injection of 5-hydroxytryptophan. Behavioural evidence supports biochemical findings suggesting that lithium's interactions with the phoshphatidyl inositol and cyclic AMP signal transduction systems may be relevant to its therapeutic effects in bipolar disorder. Further research on more specific behaviours may elucidate the relevant pharmacological mechanisms underlying the therapeutic effect of lithium.

UI MeSH Term Description Entries
D007294 Inositol An isomer of glucose that has traditionally been considered to be a B vitamin although it has an uncertain status as a vitamin and a deficiency syndrome has not been identified in man. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1379) Inositol phospholipids are important in signal transduction. Myoinositol,Chiro-Inositol,Mesoinositol,Chiro Inositol
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D002772 Cholera Toxin An ENTEROTOXIN from VIBRIO CHOLERAE. It consists of two major protomers, the heavy (H) or A subunit and the B protomer which consists of 5 light (L) or B subunits. The catalytic A subunit is proteolytically cleaved into fragments A1 and A2. The A1 fragment is a MONO(ADP-RIBOSE) TRANSFERASE. The B protomer binds cholera toxin to intestinal epithelial cells and facilitates the uptake of the A1 fragment. The A1 catalyzed transfer of ADP-RIBOSE to the alpha subunits of heterotrimeric G PROTEINS activates the production of CYCLIC AMP. Increased levels of cyclic AMP are thought to modulate release of fluid and electrolytes from intestinal crypt cells. Cholera Toxin A,Cholera Toxin B,Cholera Toxin Protomer A,Cholera Toxin Protomer B,Cholera Toxin Subunit A,Cholera Toxin Subunit B,Choleragen,Choleragenoid,Cholera Enterotoxin CT,Cholera Exotoxin,Cholera Toxin A Subunit,Cholera Toxin B Subunit,Procholeragenoid,Enterotoxin CT, Cholera,Exotoxin, Cholera,Toxin A, Cholera,Toxin B, Cholera,Toxin, Cholera
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000928 Antidepressive Agents Mood-stimulating drugs used primarily in the treatment of affective disorders and related conditions. Several MONOAMINE OXIDASE INHIBITORS are useful as antidepressants apparently as a long-term consequence of their modulation of catecholamine levels. The tricyclic compounds useful as antidepressive agents (ANTIDEPRESSIVE AGENTS, TRICYCLIC) also appear to act through brain catecholamine systems. A third group (ANTIDEPRESSIVE AGENTS, SECOND-GENERATION) is a diverse group of drugs including some that act specifically on serotonergic systems. Antidepressant,Antidepressant Drug,Antidepressant Medication,Antidepressants,Antidepressive Agent,Thymoanaleptic,Thymoanaleptics,Thymoleptic,Thymoleptics,Antidepressant Drugs,Agent, Antidepressive,Drug, Antidepressant,Medication, Antidepressant
D001522 Behavior, Animal The observable response an animal makes to any situation. Autotomy Animal,Animal Behavior,Animal Behaviors

Related Publications

O Kofman, and Y Patishi
April 2023, Proceedings of the National Academy of Sciences of the United States of America,
O Kofman, and Y Patishi
February 2000, Trends in pharmacological sciences,
O Kofman, and Y Patishi
January 1992, Clinical neuropharmacology,
O Kofman, and Y Patishi
October 2006, Journal of clinical hypertension (Greenwich, Conn.),
O Kofman, and Y Patishi
February 1994, Biochemical pharmacology,
O Kofman, and Y Patishi
December 1991, Trends in biochemical sciences,
O Kofman, and Y Patishi
June 2018, International journal of molecular sciences,
O Kofman, and Y Patishi
January 1996, International review of cytology,
O Kofman, and Y Patishi
January 1992, Mikrobiologicheskii zhurnal,
Copied contents to your clipboard!