Androgen regulation of immunological and biological activities of pituitary follicle-stimulating hormone isoforms in male rats. 1999

S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
Instituto de BiologĂ­a y Medicina Experimental, Buenos Aires, Argentina.

Follicle-stimulating hormone (FSH) is involved in the regulation and maintenance of gametogenesis. It exists in multiple molecular forms with different oligosaccharide structures which in turn are influenced by the hormonal milieu. Previous studies from our laboratory demonstrated that antiandrogen administration to immature male rats altered the biological activity and the distribution profile of pituitary FSH isoforms. The aim of this study was to examine possible modifications in pituitary FSH polymorphism throughout sexual development (10-, 32- and 75-day-old rats). In addition, the effect of androgen deprivation by castration (32-day-old rats) and its replacement with a nonaromatizable androgen - dihydrotestosterone - on pituitary FSH polymorphism was determined. Concanavalin A affinity chromatography was used to isolate groups of FSH isoforms according to their carbohydrate inner structure. Radioimmunoassay and Sertoli cell bioassay were used to evaluate FSH immuno- and bioactivities. Androgen rise in serum was accompanied by a marked increase in pituitary bio- and immuno-FSH content in 32- and 75-day-old rats. However, FSH pituitary content did not vary despite the significant increment observed in serum FSH levels after castration and decrease to control levels after androgen replacement. The distribution profile of immuno- and bioactive FSH changed throughout sexual maturation. The proportion of pituitary FSH isoforms bearing complex oligosaccharide structures (triantennary, bisecting, complete and truncated biantennary) increased with age, with a concomitant decrease in the proportion of isoforms bearing incomplete carbohydrate chains. The distribution profile observed in castrated 32-day-old rats was similar to that determined in 10-day-old animals. Androgen replacement restored the distribution profile to normal. These results suggest that androgens regulate the incorporation of sugar residues to the carbohydrate chains of pituitary FSH favoring the biosynthesis of complex-type oligosaccharide structures.

UI MeSH Term Description Entries
D007536 Isomerism The phenomenon whereby certain chemical compounds have structures that are different although the compounds possess the same elemental composition. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed) Isomerisms
D008297 Male Males
D009844 Oligosaccharides Carbohydrates consisting of between two (DISACCHARIDES) and ten MONOSACCHARIDES connected by either an alpha- or beta-glycosidic link. They are found throughout nature in both the free and bound form. Oligosaccharide
D009919 Orchiectomy The surgical removal of one or both testicles. Castration, Male,Orchidectomy,Castrations, Male,Male Castration,Male Castrations,Orchidectomies,Orchiectomies
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D005640 Follicle Stimulating Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Follicle-stimulating hormone stimulates GAMETOGENESIS and the supporting cells such as the ovarian GRANULOSA CELLS, the testicular SERTOLI CELLS, and LEYDIG CELLS. FSH consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity. FSH (Follicle Stimulating Hormone),Follicle-Stimulating Hormone,Follitropin
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012741 Sexual Maturation Achievement of full sexual capacity in animals and in humans. Sex Maturation,Maturation, Sex,Maturation, Sexual
D013196 Dihydrotestosterone A potent androgenic metabolite of TESTOSTERONE. It is produced by the action of the enzyme 3-OXO-5-ALPHA-STEROID 4-DEHYDROGENASE. 5 alpha-Dihydrotestosterone,Androstanolone,Stanolone,17 beta-Hydroxy-5 beta-Androstan-3-One,17beta-Hydroxy-5alpha-Androstan-3-One,5 beta-Dihydrotestosterone,5-alpha Dihydrotestosterone,5-alpha-DHT,Anaprotin,Andractim,Dihydroepitestosterone,Gelovit,17 beta Hydroxy 5 beta Androstan 3 One,17beta Hydroxy 5alpha Androstan 3 One,5 alpha DHT,5 alpha Dihydrotestosterone,5 beta Dihydrotestosterone,Dihydrotestosterone, 5-alpha,beta-Hydroxy-5 beta-Androstan-3-One, 17
D013739 Testosterone A potent androgenic steroid and major product secreted by the LEYDIG CELLS of the TESTIS. Its production is stimulated by LUTEINIZING HORMONE from the PITUITARY GLAND. In turn, testosterone exerts feedback control of the pituitary LH and FSH secretion. Depending on the tissues, testosterone can be further converted to DIHYDROTESTOSTERONE or ESTRADIOL. 17-beta-Hydroxy-4-Androsten-3-one,17-beta-Hydroxy-8 alpha-4-Androsten-3-one,8-Isotestosterone,AndroGel,Androderm,Andropatch,Androtop,Histerone,Sterotate,Sustanon,Testim,Testoderm,Testolin,Testopel,Testosterone Sulfate,17 beta Hydroxy 4 Androsten 3 one,17 beta Hydroxy 8 alpha 4 Androsten 3 one,8 Isotestosterone

Related Publications

S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
February 1970, Journal of reproduction and fertility,
S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
November 2003, Neuroendocrinology,
S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
April 1968, Journal of reproduction and fertility,
S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
August 1983, Fertility and sterility,
S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
May 1999, Human reproduction (Oxford, England),
S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
December 1992, Journal of molecular endocrinology,
S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
October 1992, Journal of molecular endocrinology,
S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
January 1963, The Journal of endocrinology,
S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
January 1984, Andrologia,
S B Rulli, and S Creus, and E Pellizzari, and S B Cigorraga, and R S Calandra, and S Campo
July 1983, Molecular and cellular endocrinology,
Copied contents to your clipboard!