Phospholipid metabolism of hypothermically stored rat hepatocytes. 1999

J S Kim, and J H Southard
Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, WI, USA.

Isolated rat hepatocytes were suspended and stored in either Liebovitz-15 medium (37 degrees C or 4 degrees C) or University of Wisconsin (UW) solution (4 degrees C) containing [(3)H] arachidonic acid (AA). At varying times, membrane phospholipids were separated by thin layer chromatography. AA labeled phospholipids similarly at both 4 degrees C and 37 degrees C. Analysis of the ratios of [(3)H] AA and [(14)C] glycerol incorporated into phosphatidic acid or other phospholipids in dual-labeled cells indicated that the deacylation/reacylation cycle was the major route of AA incorporation at hypothermia. This was supported by showing that blocking phospholipase A(2) (PLA(2)) activity by trifluoperazine suppressed AA incorporation into phospholipids. PLA(2) activity, measured by determining the release of AA, was slow during 48-hour cold storage, but increased significantly when ATP was depleted by inhibition of mitochondria and glycolysis. In the whole rat liver, there was no significant loss of phospholipids during 48-hour storage (total phospholipids [micromol phosphorus/L/mg] : 0.197 +/-. 001 at 0 hours) unless energy blockers were used (0.155 +/-.005 at 48 hours) or glycogen depleted by fasting the rat (0.167 +/-.001 at 48 hours). This study shows that a net PLA(2) stimulated hydrolysis of phospholipids is seen only when ATP is depleted and its generation from anaerobic glycolysis inhibited. Thus, PLA(2) hydrolysis of phospholipids is not a significant cause of liver cell injury during cold storage when livers are obtained in optimal condition. However, conditions affecting the generation of ATP during cold storage could alter PLA(2) leading to membrane damage.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008555 Melitten Basic polypeptide from the venom of the honey bee (Apis mellifera). It contains 26 amino acids, has cytolytic properties, causes contracture of muscle, releases histamine, and disrupts surface tension, probably due to lysis of cell and mitochondrial membranes. Melittin,Mellitin
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011887 Raffinose A trisaccharide occurring in Australian manna (from Eucalyptus spp, Myrtaceae) and in cottonseed meal. Gossypose,Melitose,Melitriose
D002250 Carbon Radioisotopes Unstable isotopes of carbon that decay or disintegrate emitting radiation. C atoms with atomic weights 10, 11, and 14-16 are radioactive carbon isotopes. Radioisotopes, Carbon
D002258 Carbonyl Cyanide m-Chlorophenyl Hydrazone A proton ionophore. It is commonly used as an uncoupling agent and inhibitor of photosynthesis because of its effects on mitochondrial and chloroplast membranes. CCCP,Carbonyl Cyanide meta-Chlorophenyl Hydrazone,Carbonylcyanide 4-Chlorophenylhydrazone,Propanedinitrile, ((3-chlorophenyl)hydrazono)-,Carbonyl Cyanide m Chlorophenyl Hydrazone,4-Chlorophenylhydrazone, Carbonylcyanide,Carbonyl Cyanide meta Chlorophenyl Hydrazone,Carbonylcyanide 4 Chlorophenylhydrazone

Related Publications

J S Kim, and J H Southard
March 1983, Rozhledy v chirurgii : mesicnik Ceskoslovenske chirurgicke spolecnosti,
J S Kim, and J H Southard
March 2000, Cryobiology,
J S Kim, and J H Southard
June 1975, Cryobiology,
J S Kim, and J H Southard
January 1991, Toxicology in vitro : an international journal published in association with BIBRA,
J S Kim, and J H Southard
December 1977, The Biochemical journal,
J S Kim, and J H Southard
January 1983, Zeitschrift fur experimentelle Chirurgie, Transplantation, und kunstliche Organe : Organ der Sektion Experimentelle Chirurgie der Gesellschaft fur Chirurgie der DDR,
J S Kim, and J H Southard
September 1992, The American journal of physiology,
Copied contents to your clipboard!