Postnatal development of NK1, NK2, and NK3 neurokinin receptors expression in the rat retina. 1999

H Oyamada, and K Takatsuji, and E Senba, and P W Mantyh, and M Tohyama
Department of Nursing, Osaka City University, Asahi-cho, Abenoku, Osaka, Japan.

The biological effects of tachykinins are mediated by three distinct receptors, the neurokinin 1 receptor (NK1-R), NK2-R, and NK3-R. There is no information available concerning the development of these receptors in the retina. In the present study, we investigated the localization of tachykinin receptors, using antisera directed against NK1-R, NK2-R, and NK3-R in the adult and developing rat retinas. Numerous NK1-R immunoreactive (NK1-R IR) cells were already observed in the proximal part of the neuroblastic layer in the retina at postnatal day 5 (P5). The distribution and intensity of NK1-R IR cells and processes in the inner nuclear layer (INL) and inner plexiform layer (IPL) at P10 were similar to those of adult retina. Most NK1-R IR cells located in the proximal part of INL, which were morphologically amacrine cells. In the contrast to the early expression of NK1-R IR cells, no NK3-R IR structures existed in the neuronal elements of the retina until P10. NK3-R IR processes were first detected in the outer plexiform layer (OPL) at P10. At P15, NK3-R IR somata were slightly stained in the distal and middle parts of the INL, and NK3-R IR processes were present in the OPL and the upper part of the IPL. During P15-P30, the number of NK3-R IR somata located in the INL remarkably increased. These NK3-R IR cells were morphologically bipolar and amacrine cells. This study provides differential cellular distribution of NK1-R IR cells and NK3-R IR cells in the INL of the rat retina. Our findings suggest that NK1-R and NK3-R are involved in different visual circuits and retinal maturation, and NK3-R may play previously unknown important roles in the visual processes of the rat.

UI MeSH Term Description Entries
D007106 Immune Sera Serum that contains antibodies. It is obtained from an animal that has been immunized either by ANTIGEN injection or infection with microorganisms containing the antigen. Antisera,Immune Serums,Sera, Immune,Serums, Immune
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013373 Substance P An eleven-amino acid neurotransmitter that appears in both the central and peripheral nervous systems. It is involved in transmission of PAIN, causes rapid contractions of the gastrointestinal smooth muscle, and modulates inflammatory and immune responses. Euler-Gaddum Substance P,Hypothalamic Substance P,SP(1-11),Euler Gaddum Substance P,Substance P, Euler-Gaddum,Substance P, Hypothalamic
D014795 Visual Pathways Set of cell bodies and nerve fibers conducting impulses from the eyes to the cerebral cortex. It includes the RETINA; OPTIC NERVE; optic tract; and geniculocalcarine tract. Pathway, Visual,Pathways, Visual,Visual Pathway
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

H Oyamada, and K Takatsuji, and E Senba, and P W Mantyh, and M Tohyama
November 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
H Oyamada, and K Takatsuji, and E Senba, and P W Mantyh, and M Tohyama
January 1995, Journal of receptor and signal transduction research,
H Oyamada, and K Takatsuji, and E Senba, and P W Mantyh, and M Tohyama
August 2002, Brain research,
H Oyamada, and K Takatsuji, and E Senba, and P W Mantyh, and M Tohyama
June 1997, Canadian journal of physiology and pharmacology,
H Oyamada, and K Takatsuji, and E Senba, and P W Mantyh, and M Tohyama
November 2003, Neuroscience letters,
H Oyamada, and K Takatsuji, and E Senba, and P W Mantyh, and M Tohyama
January 1988, Peptides,
H Oyamada, and K Takatsuji, and E Senba, and P W Mantyh, and M Tohyama
November 1998, The American journal of physiology,
H Oyamada, and K Takatsuji, and E Senba, and P W Mantyh, and M Tohyama
April 2002, Neuroscience letters,
Copied contents to your clipboard!