Effect of carbamazepine, phenytoin and phenobarbitone on serum levels of thyroid hormones and thyrotropin in humans. 1978

K Rootwelt, and T Ganes, and S I Johannessen

Patients on long-term treatment with either of the stereochemically related antiepileptic drugs phenytoin (DPH) or carbamazepine (CBZ) had similar changes in serum thyroid hormone concentrations. T4, FT4, FT4 index, T3, FT3, FT3 index and rT3 were reduced, whereas T3U and TSH were not significantly different from the reference group levels. Long-term phenobarbitone treatment had no convincing effect on the investigated parameters when used alone, but possibly potentiated the effect of CBZ. In patients starting on CBZ, T4 fell to a stable 70% of the basal level after 1--2 weeks. T3 decreased transitorily to 85% of the basal level. TSH showed a complementary but somewhat delayed transitory increase. T3U and TBG did not change significantly. The effect of CBZ and DPH can be explained by interference with thyroid hormone binding to TBG combined with enzyme-induced increased metabolic clearance rate of thyroid hormones without homeostatic maintenance of premedication levels of FT4 and FT3. We suggest that the regulated factor maintaining euthyroidism in these patients is the total quantity of thyroid hormones being degraded in the tissues per unit time. We conclude that serum concentrations of FT4 and FT3 do not reflect thyroid status adequately under all circumstances.

UI MeSH Term Description Entries
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D010672 Phenytoin An anticonvulsant that is used to treat a wide variety of seizures. It is also an anti-arrhythmic and a muscle relaxant. The mechanism of therapeutic action is not clear, although several cellular actions have been described including effects on ion channels, active transport, and general membrane stabilization. The mechanism of its muscle relaxant effect appears to involve a reduction in the sensitivity of muscle spindles to stretch. Phenytoin has been proposed for several other therapeutic uses, but its use has been limited by its many adverse effects and interactions with other drugs. Diphenylhydantoin,Fenitoin,Phenhydan,5,5-Diphenylhydantoin,5,5-diphenylimidazolidine-2,4-dione,Antisacer,Difenin,Dihydan,Dilantin,Epamin,Epanutin,Hydantol,Phenytoin Sodium,Sodium Diphenylhydantoinate,Diphenylhydantoinate, Sodium
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D002220 Carbamazepine A dibenzazepine that acts as a sodium channel blocker. It is used as an anticonvulsant for the treatment of grand mal and psychomotor or focal SEIZURES. It may also be used in the management of BIPOLAR DISORDER, and has analgesic properties. Amizepine,Carbamazepine Acetate,Carbamazepine Anhydrous,Carbamazepine Dihydrate,Carbamazepine Hydrochloride,Carbamazepine L-Tartrate (4:1),Carbamazepine Phosphate,Carbamazepine Sulfate (2:1),Carbazepin,Epitol,Finlepsin,Neurotol,Tegretol
D004827 Epilepsy A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313) Aura,Awakening Epilepsy,Seizure Disorder,Epilepsy, Cryptogenic,Auras,Cryptogenic Epilepsies,Cryptogenic Epilepsy,Epilepsies,Epilepsies, Cryptogenic,Epilepsy, Awakening,Seizure Disorders
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D013963 Thyroid Hormones Natural hormones secreted by the THYROID GLAND, such as THYROXINE, and their synthetic analogs. Thyroid Hormone,Hormone, Thyroid,Hormones, Thyroid
D013972 Thyrotropin A glycoprotein hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Thyrotropin stimulates THYROID GLAND by increasing the iodide transport, synthesis and release of thyroid hormones (THYROXINE and TRIIODOTHYRONINE). Thyrotropin consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the pituitary glycoprotein hormones (TSH; LUTEINIZING HORMONE and FSH), but the beta subunit is unique and confers its biological specificity. Thyroid-Stimulating Hormone,TSH (Thyroid Stimulating Hormone),Thyreotropin,Thyrotrophin,Hormone, Thyroid-Stimulating,Thyroid Stimulating Hormone
D013974 Thyroxine The major hormone derived from the thyroid gland. Thyroxine is synthesized via the iodination of tyrosines (MONOIODOTYROSINE) and the coupling of iodotyrosines (DIIODOTYROSINE) in the THYROGLOBULIN. Thyroxine is released from thyroglobulin by proteolysis and secreted into the blood. Thyroxine is peripherally deiodinated to form TRIIODOTHYRONINE which exerts a broad spectrum of stimulatory effects on cell metabolism. L-Thyroxine,Levothyroxine,T4 Thyroid Hormone,3,5,3',5'-Tetraiodothyronine,Berlthyrox,Dexnon,Eferox,Eltroxin,Eltroxine,Euthyrox,Eutirox,L-3,5,3',5'-Tetraiodothyronine,L-Thyrox,L-Thyroxin Henning,L-Thyroxin beta,L-Thyroxine Roche,Levo-T,Levothroid,Levothyroid,Levothyroxin Deladande,Levothyroxin Delalande,Levothyroxine Sodium,Levoxine,Levoxyl,Lévothyrox,Novothyral,Novothyrox,O-(4-Hydroxy-3,5-diiodophenyl) 3,5-diiodo-L-tyrosine,O-(4-Hydroxy-3,5-diiodophenyl)-3,5-diiodotyrosine,Oroxine,Sodium Levothyroxine,Synthroid,Synthrox,Thevier,Thyrax,Thyroxin,Tiroidine,Tiroxina Leo,Unithroid,L Thyrox,L Thyroxin Henning,L Thyroxin beta,L Thyroxine,L Thyroxine Roche,Levo T,Thyroid Hormone, T4

Related Publications

K Rootwelt, and T Ganes, and S I Johannessen
November 1974, The British journal of psychiatry : the journal of mental science,
K Rootwelt, and T Ganes, and S I Johannessen
September 1990, Therapeutic drug monitoring,
K Rootwelt, and T Ganes, and S I Johannessen
February 1987, Polski tygodnik lekarski (Warsaw, Poland : 1960),
K Rootwelt, and T Ganes, and S I Johannessen
January 1977, Scandinavian journal of social medicine,
K Rootwelt, and T Ganes, and S I Johannessen
December 1987, Clinical neuropharmacology,
K Rootwelt, and T Ganes, and S I Johannessen
January 1989, Epilepsia,
K Rootwelt, and T Ganes, and S I Johannessen
November 1979, Journal of the Medical Association of Thailand = Chotmaihet thangphaet,
K Rootwelt, and T Ganes, and S I Johannessen
February 1977, The Journal of clinical endocrinology and metabolism,
K Rootwelt, and T Ganes, and S I Johannessen
August 1978, Metabolism: clinical and experimental,
K Rootwelt, and T Ganes, and S I Johannessen
February 1975, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!