Expression of the basic Helix-Loop-Helix ME1 E-protein during development and aging of the murine cerebellum. 1999

M Uittenbogaard, and A Chiaramello
Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA.

Genesis of cerebellar granule cells is controlled by key transcription factors, such as the lineage-specific basic Helix-Loop-Helix (bHLH) transcription factor MATH-1, whose activity is dependent upon dimerization with bHLH E-proteins. In an effort to understand the molecular mechanisms of bHLH proteins orchestrating cerebellar development, we explored the spatio-temporal expression of the ME1 E-protein. Our results reveal that ME1 expression is first detected in the cerebellar primordium and then in the rhombic lip cells at E12.5. Its expression persists in the emerging external germinal layer during embryonic expansion. In adult cerebellum, prominent ME1 expression is detected in mature granule cells located in the internal granular layer. However, ME1 expression is not sustained in aged cerebellum. A similar declined pattern of expression is also observed in the aging hippocampus.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005260 Female Females
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging

Related Publications

M Uittenbogaard, and A Chiaramello
February 1996, Brain research. Molecular brain research,
M Uittenbogaard, and A Chiaramello
June 1995, Developmental dynamics : an official publication of the American Association of Anatomists,
M Uittenbogaard, and A Chiaramello
May 1995, Nucleic acids research,
M Uittenbogaard, and A Chiaramello
August 2003, Development genes and evolution,
M Uittenbogaard, and A Chiaramello
November 1993, Journal of immunology (Baltimore, Md. : 1950),
M Uittenbogaard, and A Chiaramello
November 2021, Journal of cellular physiology,
M Uittenbogaard, and A Chiaramello
July 2003, Neuron,
M Uittenbogaard, and A Chiaramello
February 1997, Current opinion in neurobiology,
Copied contents to your clipboard!