Programmed cell death in the nematode C. elegans. 1999

M O Hengartner
Cold Spring Harbor Laboratory, New York 11724, USA.

Programmed cell death is a common feature during animal development. In the nematode C. elegans, more than 12 genes have been identified that function in the apoptotic killing and elimination of 131 of the 1090 cells that are generated during hermaphrodite development. These genes divide the process of programmed cell death into three distinct steps: execution of the death sentence; engulfment of dying cells; and degradation of dead, engulfed cells. Biochemical characterization of the genes in this pathway has led to the identification of an apoptotic machinery that mediates apoptotic death in this species. The proximal cause of apoptosis in C. elegans is the activation of the caspase homolog CED-3 from the inactive zymogen (proCED-3) into the mature protease. This activation is mediated by the Apaf-1 homolog CED-4. In cells that should survive, CED-3 and CED-4 pro-apoptotic activity is antagonized by the Bcl-2 family member CED-9. CED-9 has been proposed to prevent death by sequestering CED-4 and proCED-3 in an inactive ternary complex, the apoptosome. In cells fated to die, CED-9 is, in turn, inactivated by the pro-apoptotic BH3 domain-containing protein EGL-1, likely through a direct protein-protein interaction. The structural and functional conservation of cell death genes between nematodes and mammals strongly suggests that the apoptotic program is ancient in origin and that all metazoans share a common mechanism of apoptotic cell killing.

UI MeSH Term Description Entries
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D005075 Biological Evolution The process of cumulative change over successive generations through which organisms acquire their distinguishing morphological and physiological characteristics. Evolution, Biological
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017173 Caenorhabditis elegans A species of nematode that is widely used in biological, biochemical, and genetic studies. Caenorhabditis elegan,elegan, Caenorhabditis
D017209 Apoptosis A regulated cell death mechanism characterized by distinctive morphologic changes in the nucleus and cytoplasm, including the endonucleolytic cleavage of genomic DNA, at regularly spaced, internucleosomal sites, i.e., DNA FRAGMENTATION. It is genetically programmed and serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth. Apoptosis, Extrinsic Pathway,Apoptosis, Intrinsic Pathway,Caspase-Dependent Apoptosis,Classic Apoptosis,Classical Apoptosis,Programmed Cell Death,Programmed Cell Death, Type I,Apoptoses, Extrinsic Pathway,Apoptoses, Intrinsic Pathway,Apoptosis, Caspase-Dependent,Apoptosis, Classic,Apoptosis, Classical,Caspase Dependent Apoptosis,Cell Death, Programmed,Classic Apoptoses,Extrinsic Pathway Apoptoses,Extrinsic Pathway Apoptosis,Intrinsic Pathway Apoptoses,Intrinsic Pathway Apoptosis

Related Publications

M O Hengartner
January 1999, Cancer metastasis reviews,
M O Hengartner
July 1994, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
M O Hengartner
January 2000, Methods in enzymology,
M O Hengartner
January 2012, Methods in cell biology,
M O Hengartner
August 2012, European journal of cell biology,
M O Hengartner
January 2001, TheScientificWorldJournal,
M O Hengartner
January 2000, Ernst Schering Research Foundation workshop,
Copied contents to your clipboard!