Relationship between structural parameters, bone mineral density and fracture load in lumbar vertebrae, based on high-resolution computed tomography, quantitative computed tomography and compression tests. 1999

M A Haidekker, and R Andresen, and H J Werner
MeVis, Center for Medical Diagnostic Systems and Visualization, University of Bremen, Bremen.

Different noninvasive techniques for the assessment of the individual fracture risk in osteoporosis are introduced, and the relation between structural properties of high-resolution computed tomography (HR-CT) images of vertebral bodies, their bone mineral density (BMD) and the fracture load is analyzed. In 24 unfractured lumbar vertebrae with different degrees of demineralization from six specimens, the trabecular and cortical BMD was determined using quantitative CT. A lateral X-ray image revealed the number of fractures in the entire spine. A structural analysis of spongy and cortical bone was performed based on the HR-CT images. In the spongiosa, the fractal dimension was calculated as a function of the threshold value. In the cortical shell, the maximum number of clusters of low BMD was determined at varying threshold values. After the CT measurements the vertebrae were excised and compressed until fractured. On the basis of the spongiosa BMD and the number of fractures, 3 cases were found to be severely osteoporotic; the other 3 cases showed osteopenia. The average fracture loads were determined as 3533 N for the non-osteoporotic cases (range 2602-5802 N) and 1725 N for the osteoporotic cases (range 1311-2490 N). The parameters were determined as follows: average spongiosa BMD 115.2 mg/ml (101.8-135.3 mg/ml) for the non-osteoporotic cases, 46.2 mg/ml (34.8-57.6 mg/ml) for the osteoporotic cases; average cortical BMD 285.1 mg/ml (216.4-361.9 mg/ml) for the non-osteoporotic cases, 136. 1 mg/ml (142.5-215.2 mg/ml) for the osteoporotic cases; spongiosa structure: average 0.5 (range 0.32-0.75) for the non-osteoporotic cases, average 1.05 (range 0.87-1.24) for the osteoporotic cases; cortical structure: average 81 (range 55-104) for the non-osteoporotic cases), average 136 (range 102-159) for the osteoporotic cases. Single parameters (BMD and structure) and weighted sums of these parameters were correlated with the fracture load, resulting in correlation coefficients of r(sBMD) = 0.82 (spongiosa BMD), r(cBMD) = 0.82 (cortical BMD), r(sStr) = -0.75 (spongiosa structure) and r(cStr) = -0.86 (cortical structure). The weighted sum of cortical and spongiosa BMD resulted in r(BMD) = 0.86, of cortical and spongiosa structure in r(Str) = -0.86. A weighted combination of all four parameters correlates with the fracture load at r(4) = 0.89, all correlations being statistically significant (p<0.0001). The four individual parameters show only a slight overlap between non-osteoporotic and osteoporotic subjects. The high correlation of the cortical BMD and the structural parameter in cortical bone indicates the important contribution of the cortical shell to vertebral stability. A weighted sum of multiple parameters results in a higher correlation with the fracture load and does not show an overlap between the two groups. It is best suited to estimate the individual fracture risk. The presented methods are generally applicable in vivo; and allow an improvement of the diagnosis of osteoporosis compared with the measurement of the BMD alone.

UI MeSH Term Description Entries
D008159 Lumbar Vertebrae VERTEBRAE in the region of the lower BACK below the THORACIC VERTEBRAE and above the SACRAL VERTEBRAE. Vertebrae, Lumbar
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D010024 Osteoporosis Reduction of bone mass without alteration in the composition of bone, leading to fractures. Primary osteoporosis can be of two major types: postmenopausal osteoporosis (OSTEOPOROSIS, POSTMENOPAUSAL) and age-related or senile osteoporosis. Age-Related Osteoporosis,Bone Loss, Age-Related,Osteoporosis, Age-Related,Osteoporosis, Post-Traumatic,Osteoporosis, Senile,Senile Osteoporosis,Osteoporosis, Involutional,Age Related Osteoporosis,Age-Related Bone Loss,Age-Related Bone Losses,Age-Related Osteoporoses,Bone Loss, Age Related,Bone Losses, Age-Related,Osteoporoses,Osteoporoses, Age-Related,Osteoporoses, Senile,Osteoporosis, Age Related,Osteoporosis, Post Traumatic,Post-Traumatic Osteoporoses,Post-Traumatic Osteoporosis,Senile Osteoporoses
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000368 Aged A person 65 years of age or older. For a person older than 79 years, AGED, 80 AND OVER is available. Elderly
D000369 Aged, 80 and over Persons 80 years of age and older. Oldest Old
D001696 Biomechanical Phenomena The properties, processes, and behavior of biological systems under the action of mechanical forces. Biomechanics,Kinematics,Biomechanic Phenomena,Mechanobiological Phenomena,Biomechanic,Biomechanic Phenomenas,Phenomena, Biomechanic,Phenomena, Biomechanical,Phenomena, Mechanobiological,Phenomenas, Biomechanic
D012307 Risk Factors An aspect of personal behavior or lifestyle, environmental exposure, inborn or inherited characteristic, which, based on epidemiological evidence, is known to be associated with a health-related condition considered important to prevent. Health Correlates,Risk Factor Scores,Risk Scores,Social Risk Factors,Population at Risk,Populations at Risk,Correlates, Health,Factor, Risk,Factor, Social Risk,Factors, Social Risk,Risk Factor,Risk Factor Score,Risk Factor, Social,Risk Factors, Social,Risk Score,Score, Risk,Score, Risk Factor,Social Risk Factor

Related Publications

M A Haidekker, and R Andresen, and H J Werner
July 2007, Clinical biomechanics (Bristol, Avon),
M A Haidekker, and R Andresen, and H J Werner
November 1996, Skeletal radiology,
M A Haidekker, and R Andresen, and H J Werner
February 2012, Academic radiology,
M A Haidekker, and R Andresen, and H J Werner
January 2019, Journal of orthopaedic translation,
M A Haidekker, and R Andresen, and H J Werner
August 1990, Nihon eiseigaku zasshi. Japanese journal of hygiene,
M A Haidekker, and R Andresen, and H J Werner
January 2013, Computer methods in biomechanics and biomedical engineering,
M A Haidekker, and R Andresen, and H J Werner
August 2019, Advances in clinical and experimental medicine : official organ Wroclaw Medical University,
M A Haidekker, and R Andresen, and H J Werner
June 2020, Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA,
Copied contents to your clipboard!