Automated comet assay analysis. 1999

W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
Institut für Medizinische Strahlenbiologie, Universitätsklinikum Essen, Germany. wilfried.boecker@uni-essen.de

BACKGROUND Recently the "comet assay" or "single-cell gel electrophoresis assay" has been established as a sensitive method for the detection of DNA damage and repair. Most of the software now available to quantify various parameters for DNA damage requires the interaction of a human observer. In this report, we describe an automated analysis system that is based on self-developed software and hardware and needs minimal human interaction. METHODS The image analysis is divided into two parts: 1) automatic cell recognition and comet classification and 2) quantification of desired comet parameters. Image preprocessing, segmentation, and feature classification were developed with algorithms based on mathematical morphology. To enhance evaluation speed, we have introduced parallel processing of data under the Windows NT operating system (Microsoft Corporation, Redmond, WA). Use of an analogue real-time autofocus unit (Böcker et al.: Phys Med Biol 1997;42:1981-1992) allows for faster analysis. RESULTS Our recognition software shows a sensitivity of 95.2% and a specificity of 92.7% when tested on test samples from routine work with DNA damage by low-dose radiation (0-2 Gy). The parallel hardware and software concept enables us to analyze 100 comets on one slide in less than 15 min. CONCLUSIONS A comparison of measurements made on the same samples by manual and automated analysis systems revealed that there are no significant differences. The slope of the dose-response curves and the repair kinetics are very similar and demonstrate that automatic comet assay analysis is possible.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004586 Electrophoresis An electrochemical process in which macromolecules or colloidal particles with a net electric charge migrate in a solution under the influence of an electric current. Electrophoreses
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000465 Algorithms A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task. Algorithm
D001331 Automation Controlled operation of an apparatus, process, or system by mechanical or electronic devices that take the place of human organs of observation, effort, and decision. (From Webster's Collegiate Dictionary, 1993) Automations
D012680 Sensitivity and Specificity Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed) Specificity,Sensitivity,Specificity and Sensitivity
D020552 Comet Assay A genotoxicological technique for measuring DNA damage in an individual cell using single-cell gel electrophoresis. Cell DNA fragments assume a "comet with tail" formation on electrophoresis and are detected with an image analysis system. Alkaline assay conditions facilitate sensitive detection of single-strand damage. Alkaline Comet Assay,Alkaline Single-Cell Gel Electrophoresis Assay,Electrophoresis, Gel, Single-Cell,Gel Electrophoresis, Single-Cell,Alkaline Comet Assays,Alkaline Single Cell Gel Electrophoresis Assay,Assay, Alkaline Comet,Assay, Comet,Assays, Alkaline Comet,Assays, Comet,Comet Assay, Alkaline,Comet Assays,Comet Assays, Alkaline,Electrophoreses, Single-Cell Gel,Electrophoresis, Single-Cell Gel,Gel Electrophoreses, Single-Cell,Gel Electrophoresis, Single Cell,Single-Cell Gel Electrophoreses,Single-Cell Gel Electrophoresis

Related Publications

W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
January 2014, Redox biology,
W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
September 2016, Scientific reports,
W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
January 2008, Radiation protection dosimetry,
W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
April 2010, Mutation research,
W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
January 2014, Frontiers in genetics,
W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
October 1997, International journal of radiation biology,
W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
November 2020, Scientific reports,
W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
July 2011, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
January 2000, Cytometry,
W Böcker, and W Rolf, and T Bauch, and W U Müller, and C Streffer
May 2012, Medical & biological engineering & computing,
Copied contents to your clipboard!