| D009682 |
Magnetic Resonance Spectroscopy |
Spectroscopic method of measuring the magnetic moment of elementary particles such as atomic nuclei, protons or electrons. It is employed in clinical applications such as NMR Tomography (MAGNETIC RESONANCE IMAGING). |
In Vivo NMR Spectroscopy,MR Spectroscopy,Magnetic Resonance,NMR Spectroscopy,NMR Spectroscopy, In Vivo,Nuclear Magnetic Resonance,Spectroscopy, Magnetic Resonance,Spectroscopy, NMR,Spectroscopy, Nuclear Magnetic Resonance,Magnetic Resonance Spectroscopies,Magnetic Resonance, Nuclear,NMR Spectroscopies,Resonance Spectroscopy, Magnetic,Resonance, Magnetic,Resonance, Nuclear Magnetic,Spectroscopies, NMR,Spectroscopy, MR |
|
| D006634 |
Histamine H1 Antagonists |
Drugs that selectively bind to but do not activate histamine H1 receptors, thereby blocking the actions of endogenous histamine. Included here are the classical antihistaminics that antagonize or prevent the action of histamine mainly in immediate hypersensitivity. They act in the bronchi, capillaries, and some other smooth muscles, and are used to prevent or allay motion sickness, seasonal rhinitis, and allergic dermatitis and to induce somnolence. The effects of blocking central nervous system H1 receptors are not as well understood. |
Antihistamines, Classical,Antihistaminics, Classical,Antihistaminics, H1,Histamine H1 Antagonist,Histamine H1 Receptor Antagonist,Histamine H1 Receptor Antagonists,Histamine H1 Receptor Blockaders,Antagonists, Histamine H1,Antagonists, Histamine H1 Receptor,Antihistamines, Sedating,Blockaders, Histamine H1 Receptor,First Generation H1 Antagonists,H1 Receptor Blockaders,Histamine H1 Blockers,Receptor Blockaders, H1,Antagonist, Histamine H1,Classical Antihistamines,Classical Antihistaminics,H1 Antagonist, Histamine,H1 Antagonists, Histamine,H1 Antihistaminics,Sedating Antihistamines |
|
| D013329 |
Structure-Activity Relationship |
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. |
Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships |
|
| D013844 |
Thiazoles |
Heterocyclic compounds where the ring system is composed of three CARBON atoms, a SULFUR and NITROGEN atoms. |
Thiazole |
|