Cell type-specific activation of neuronal nicotinic acetylcholine receptor subunit genes by Sox10. 1999

Q Liu, and I N Melnikova, and M Hu, and P D Gardner
Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, Texas 78245-3207, USA.

The regulatory factor Sox10 is expressed in neural crest derivatives during development as well as in the adult CNS and peripheral nervous system. Mutations of the human Sox10 gene have been identified in patients with Waardenburg-Hirschsprung syndrome that is characterized by defects in neural crest development. Previous studies suggested that Sox10 might function as an important transcriptional regulator of neural crest development. No natural target genes of Sox10 have yet been identified. Although human Sox10 activates a synthetic promoter consisting of a TATA box and multiple Sox consensus sequences, no transcriptional activity of the rat Sox10 homolog has been detected. Here we report that the neuronal nicotinic acetylcholine receptor beta4 and alpha3 subunit gene promoters are transactivated by rat Sox10 in a cell type-specific manner. The alpha3 and beta4 subunits, in combination with the alpha5 subunit, make up the predominant nicotinic receptor subtype expressed in the peripheral nervous system. Transfections using Sox10 mutants indicate that the C-terminal region is dispensable for its ability to activate the beta4 and alpha3 promoters. Rat Sox10 was originally identified as an accessory protein of the POU domain protein Tst-1/Oct6/SCIP in glial cells. Tst-1/Oct6/SCIP was shown previously to activate the alpha3 promoter. We now demonstrate that it can transactivate the beta4 promoter as well. However, we were unable to detect any synergistic effects of Sox10 and Tst-1/Oct6/SCIP on beta4 or alpha3 promoter activity. Finally, we present data suggesting that recombinant Sox10 protein can directly interact with a previously characterized regulatory region of the beta4 gene.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell

Related Publications

Q Liu, and I N Melnikova, and M Hu, and P D Gardner
May 1997, Journal of neurochemistry,
Q Liu, and I N Melnikova, and M Hu, and P D Gardner
August 1992, Genomics,
Q Liu, and I N Melnikova, and M Hu, and P D Gardner
March 1989, Journal of neurochemistry,
Q Liu, and I N Melnikova, and M Hu, and P D Gardner
August 2003, The Journal of biological chemistry,
Q Liu, and I N Melnikova, and M Hu, and P D Gardner
March 1994, The European journal of neuroscience,
Q Liu, and I N Melnikova, and M Hu, and P D Gardner
May 2006, Neuroscience letters,
Q Liu, and I N Melnikova, and M Hu, and P D Gardner
June 1998, Journal of neurochemistry,
Q Liu, and I N Melnikova, and M Hu, and P D Gardner
August 1990, Journal of neurochemistry,
Q Liu, and I N Melnikova, and M Hu, and P D Gardner
March 1991, Nature,
Q Liu, and I N Melnikova, and M Hu, and P D Gardner
February 2003, Molecular pharmacology,
Copied contents to your clipboard!