A phosphatidylinositol 3-Kinase/p70 ribosomal S6 protein kinase pathway is required for the regulation by insulin of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase gene expression in human muscle cells. 1999

M Roques, and H Vidal
INSERM U449, Faculté de Médecine René Laënnec, Université Claude Bernard Lyon-1, F-69372, Lyon, France. roques@laennec.univ-lyon1.fr

Insulin acutely up-regulates p85alpha phosphatidylinositol 3-kinase (p85alphaPI 3-K) mRNA levels in human skeletal muscle (Laville, M., Auboeuf, D., Khalfallah, Y., Vega, N., Riou, J. P., and Vidal, H. (1996) J. Clin. Invest. 98, 43-49). In the present work, we attempted to elucidate the mechanism of action of insulin in primary cultures of human muscle cells. Insulin (10(-7) M, 6 h of incubation) induced a 2-fold increase in p85alphaPI 3-K mRNA abundances (118 +/- 12 versus 233 +/- 35 amol/microgram total RNA, n = 5, p < 0.01) without changing the expression levels of insulin receptor, IRS-1, glycogen synthase, and Glut 4 mRNAs in differentiated myotubes from healthy subjects. The effect is most probably due to a transcriptional activation of the p85alphaPI 3-K gene because the half-life of the mRNA was not affected by insulin treatment (4.0 +/- 0.8 versus 3.1 +/- 0.4 h). PD98059 (50 microM) did not modify the insulin response but increased p85alphaPI 3-K mRNA levels in the absence of insulin, suggesting that the mitogen-activated protein kinase pathway exerts a negative effect on p85alphaPI 3-K mRNA expression in the absence of the hormone. On the other hand, the insulin effect was totally abolished by LY294002 (10 microM) and rapamycin (50 nM). In addition, overexpression of a constitutively active protein kinase B increased p85alphaPI 3-K mRNA levels. These results indicate that the phosphatidylinositol 3-kinase/PKB/p70S6 kinase pathway is required for the stimulation by insulin of p85alphaPI 3-K gene expression in human muscle cells.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009025 Morpholines Tetrahydro-1,4-Oxazines,Tetrahydro 1,4 Oxazines
D010750 Phosphoproteins Phosphoprotein
D011500 Protein Synthesis Inhibitors Compounds which inhibit the synthesis of proteins. They are usually ANTI-BACTERIAL AGENTS or toxins. Mechanism of the action of inhibition includes the interruption of peptide-chain elongation, the blocking the A site of ribosomes, the misreading of the genetic code or the prevention of the attachment of oligosaccharide side chains to glycoproteins. Protein Synthesis Antagonist,Protein Synthesis Antagonists,Protein Synthesis Inhibitor,Antagonist, Protein Synthesis,Antagonists, Protein Synthesis,Inhibitor, Protein Synthesis,Inhibitors, Protein Synthesis,Synthesis Antagonist, Protein,Synthesis Inhibitor, Protein
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell

Related Publications

M Roques, and H Vidal
June 2010, American journal of respiratory cell and molecular biology,
M Roques, and H Vidal
April 1999, The Journal of biological chemistry,
M Roques, and H Vidal
August 2000, The Journal of biological chemistry,
Copied contents to your clipboard!